Fibrados de Higgs multiplicativos, monopolos e involuciones
Loading...
Download
Official URL
Full text at PDC
Publication date
2024
Defense date
25/10/2023
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Complutense de Madrid
Citation
Abstract
Esta memoria se centra en el estudio de la acción de una involución holomorfa θ de un grupo reductivo complejo G en el espacio de los G-fibrados de Higgs multiplicativos sobre una superficie de Riemann compacta X, introducidos por Hurtubise y Markman [HM02]. Dada la correspondencia de Charbonneau–Hurtubise [CH11] y Smith [Smi16] entre fibrados de Higgs multiplicativos y monopolos singulares en S1 X, donde S1 es la circunferencia, equivalentemente estudiamos la acción de θ en el espacio de móduli de monopolos singulares en S1 X. Concretamente, estudiamos los puntos fijos de las involuciones..
This dissertation is centered around the study of the action of a holomorphic involution θ of a complex reductive group G on the space of multiplicative GHiggs bundles over a compact Riemann surface X, as introduced by Hurtubise and Markman [HM02]. Provided the correspondence of Charbonneau–Hurtubise [CH11] and Smith [Smi16] between multiplicative Higgs bundles and singular monopoles on S1 X, where S1 is the circle, equivalently we study the action of θon the moduli space of singular monopoles on S1 X. More precisely, we study the fixed points of the involutions...
This dissertation is centered around the study of the action of a holomorphic involution θ of a complex reductive group G on the space of multiplicative GHiggs bundles over a compact Riemann surface X, as introduced by Hurtubise and Markman [HM02]. Provided the correspondence of Charbonneau–Hurtubise [CH11] and Smith [Smi16] between multiplicative Higgs bundles and singular monopoles on S1 X, where S1 is the circle, equivalently we study the action of θon the moduli space of singular monopoles on S1 X. More precisely, we study the fixed points of the involutions...
Description
Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas, leída el 25-10-2023