Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

An efficient method for computing genus expansions and counting numbers in the Hermitian matrix model

dc.contributor.authorÁlvarez Galindo, Gabriel
dc.contributor.authorMartínez Alonso, Luis
dc.contributor.authorMedina Reus, Elena
dc.date.accessioned2023-06-20T03:31:29Z
dc.date.available2023-06-20T03:31:29Z
dc.date.issued2011-07-11
dc.description© 2011 Elsevier B.V. The financial support of the Universidad Complutense under project GR58/08-910556 and the Comisión Interministerial de Ciencia y Tecnología under projects FIS2008-00200 and FIS2008-00209 are gratefully acknowledged.
dc.description.abstractWe present a method to compute the genus expansion of the free energy of Hermitian matrix models from the large N expansion of the recurrence coefficients of the associated family of orthogonal polynomials. The method is based on the Bleher-Its deformation of the model, on its associated integral representation of the free energy, and on a method for solving the string equation which uses the resolvent of the Lax operator of the underlying Toda hierarchy. As a byproduct we obtain an efficient algorithm to compute generating functions for the enumeration of labeled k-maps which does not require the explicit expressions of the coefficients of the topological expansion. Finally we discuss the regularization of singular one-cut models within this approach.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipUniversidad Complutense
dc.description.sponsorshipComision Interministerial de Ciencia y Tecnologia
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20467
dc.identifier.doi10.1016/j.nuclphysb.2011.02.019
dc.identifier.issn0550-3213
dc.identifier.officialurlhttp://pdn.sciencedirect.com/science?_ob=MiamiImageURL&_cid=271560&_user=144492&_pii=S0550321311001246&_check=y&_origin=article&_zone=toolbar&_coverDate=11-Jul-2011&view=c&originContentFamily=serial&wchp=dGLbVlV-zSkWz&md5=e155f623a2d9c04bb489d6b9a45028c8&
dc.identifier.relatedurlhttp://arxiv.org/pdf/1101.2727.pdf
dc.identifier.relatedurlhttp://pdn.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/43708
dc.issue.number2
dc.journal.titleNuclear Physics B
dc.language.isoeng
dc.page.final429
dc.page.initial398
dc.publisherElsevier Science BV
dc.relation.projectIDGR58/08-910556
dc.relation.projectIDFIS2008-00200
dc.relation.projectIDFIS2008-00209
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordGraphical Enumeration
dc.subject.keywordPartition-Function
dc.subject.keywordAsymptotics
dc.subject.keywordUniversality
dc.subject.keywordBehavior
dc.subject.keywordGravity
dc.subject.keywordPolynomials
dc.subject.keywordLimit
dc.subject.keywordHermitian Matrix Model
dc.subject.keywordGenus Expansion
dc.subject.keywordCounting Maps
dc.subject.ucmFísica-Modelos matemáticos
dc.titleAn efficient method for computing genus expansions and counting numbers in the Hermitian matrix model
dc.typejournal article
dc.volume.number848
dcterms.references[1] E. Brezin, C. Itzykson, G. Parisi, J.B. Zuber, Planar diagrams, Commun. Math. Phys. 59 (1978) 35. [2] P. Bleher, N. Its, Asymptotics of the partition function of a random matrix model, Ann. Inst. Fourier (Grenoble) 55 (2005) 1943. [3] P. Bleher, Lectures on random matrix models. The Riemann-Hilbert approach, North Holland, Amsterdam, 2008. [4] P. Bleher, A. Deaño, Topological expansion in the cubic random matrix model, Arxiv:1011.6338 (2010). [5] P. Di Francesco, P. Ginsparg, J. Zinn-Justion, 2D gravity and random matrices, Phys. Rep. 254 (1995) 1. [6] P. Di Francesco, 2D quantum gravity, matrix models and graph combinatorics, in: Applications of random matrices in physics, Springer, Dordrecht, 2006, p. 33. [7] N. M. Ercolani, K.D.T.-R. McLaughlin, Asymptotics of the partition function for random matrices via Riemann-Hilbert techniques and applications to graphical numeration, Int. Math. Res. Not. 14 (2003)755. [8] G. Bonnet, F. David, B. Eynard, Breakdown of universality in multi-cut matrix models, J. Phys. A: Math. Gen. 33 (2000) 6739. [9] B. Eynard, Large N expansion of convergent matrix integrals, holomorphic anomalies, and background independence, J. High Energy Phys. 0903 (2009) 003. [10] P. Deift, T. Kriecherbauer, K.T.-R. McLaughlin, S. Venakides, X. Zhou, Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, Commun. Pure. Appl. Math. 52 (1999) 1335. [11] E.B. Saff, V. Totik, Logaritmic potentials with external fields, Springer, Berlin, 1997. [12] P. Deift, Orthogonal polynomials and random matrices: A Riemann–Hilbert approach, American Mathematical Society, Providence, 1999. [13] J. Ambjørn, L. Chekhov, C.F. Kristjansen, Y. Makkeenko, N. Deo,Matrix model calculations beyond the spherical limit, Nuc. Phys. B 404 (1993) 127. [14] B. Eynard, Topological expansion for the 1-hermitian matrix model correlation functions, J. High Energy Phys. 11 (2004) 031. [15] I. Kostov, Matrix models as cft: genus expansion, Nuc. Phys. B 837 (2010) 221. [16] D. Bessis, A new method in the combinatorics of the topological expansion, Commun. Math. Phys. 69 (1979) 147. [17] D. Bessis, C. Itzykson, J. Zuber, Quantum field theory techniques in graphical enumeration, Adv. in Appl. Math. 1 (1980) 109. [18] K. Demeterfi, N. Deo, S. Jain, C.-I. Tan, Multiband structure and critical behavior of matrix models, Phys. Rev. D 42 (1990) 4105. [19] H. Shirokura, Exact solution of 1-matrix model, in: Frontiers in quantum field theory, World Scientific, River Edge, 1995, p. 136. [20] H. Shirokura, Generating functions in two-dimensional quantum gravity, Nuc. Phys. B 462 (1996) 99. [21] M. Mariño, R. Schiappa, M. Weiss, Nonperturbative effects and the large-order behavior of matrix models and topological strings, Commun. Number Theory Phys. 2 (2008) 349. [22] N.M. Ercolani, K.D.T.-R. McLaughlin, V.U. Pierce, Random matrices, graphical enumeration and the continuum limit of Toda lattices, Commun. Math. Phys. 278 (2008) 31. [23] C. Itzykson, J.B. Zuber, The planar approximation. II, J. Math. Phys. 21 (1980) 411. [24] A. Gerasimov, A.Marshakov, A.Mironov, A.Morozov, A. Orlov, Matrix models of two-dimensional gravity and Toda theory, Nuc. Phys. B 357 (1991) 565. [25] E. Brézin, E. Marinari, G. Parisi, A nonperturbative ambiguity free solution of a string model, Phys. Lett. B 242 (1990) 35. [26] P. Bleher, A. Its, Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model, Ann. Math. 150 (1999) 185. [27] A.B.J. Kuijlaars, K.D. McLaughlin, Generic behavior of the density of states in random matrix theory and equilibrium problems in the presence of real analytic external fields, Commun. Pure Appl. Math. 53 (2000) 736. [28] N.M. Ercolani, Caustics, counting maps and semiclassical asymptotics, arXiv:0912.1904v2 (2009). [29] Y. Kodama, V.U. Pierce, Combinatorics of dispersionless integrable systems and universality in random matrix theory, Commun. Math. Phys. 292 (2009) 529. [30] L. Martínez Alonso, E. Medina, Semiclassical expansions in the Toda hierarchy and the Hermitian matrix model, J. Phys. A: Math. And Theor. 40 (2007) 14223. [31] I. M. Gel’fand, L.A. Dikii, Asymptotic behavior of the resolvent of Sturm-Liouville equations and the algebra of the Korteweg-de Vries equations, Uspekhi Mat. Nauk 30 (1975) 67. [32] C.A. Tracy, H. Widom, Level spacing distributions and the Airy kernel, Commun. Math. Phys. 159 (1994) 151. [33] M. Mariño, Nonperturbative effects and nonperturbative definitions in matrix models and topological strings, J. High Energy Phys. 12 (2008) 114. [34] B. Eynard, Universal distribution of random matrix eigenvalues near the birth of a cut, J. Stat. Mech. Theory Exp. (2006) P07005. [35] R. Flume, A. Klitz, A new type of critical behaviour in random matrix models, J. Stat. Mech. Theory Exp. (2008) 1742. [36] G. Álvarez, L. Martínez Alonso, E. Medina, Phase transitions in multicut matrix models and matched solutions of Whitham hierarchies, J. Stat. Mech. Theory Exp. (2010) P03023.
dspace.entity.typePublication
relation.isAuthorOfPublication93e2c5ce-9576-43ad-99af-1f18cb650636
relation.isAuthorOfPublication896aafc0-9740-4609-bc38-829f249a0d2b
relation.isAuthorOfPublication.latestForDiscovery93e2c5ce-9576-43ad-99af-1f18cb650636

Download

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
alvarez05.pdf
Size:
328.5 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
alvarez05preprint.pdf
Size:
346.02 KB
Format:
Adobe Portable Document Format

Collections