Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Interfacial state density and conductance-transient three-dimensional profiling of disordered-induced gap states on metal insulator semiconductor capacitors fabricated from electron-cyclotron resonance plasma-enhanced chemical vapor deposited SiOxNyHz films

dc.contributor.authorMartil De La Plaza, Ignacio
dc.contributor.authorGonzález Díaz, Germán
dc.contributor.authorPrado Millán, Álvaro Del
dc.date.accessioned2023-06-20T10:44:42Z
dc.date.available2023-06-20T10:44:42Z
dc.date.issued2003-08-01
dc.description© 2003 The Japan Society of Applied Physics. The authors would like to thank C. A. I. de Implantación Iónica from Complutense University in Madrid for technical assistance with the ECR-PECVD system. This research was partially supported by the Spanish DGESIC under grant nos. TIC 1FD97-2085 and TIC 98/0740.
dc.description.abstractAn electrical characterization of Al/SiOxNyHz/Si metal-insulator-semiconductor (MIS) structures has been carried out. SiOxNyHz films of different compositions have been obtained from these structures by varying gas flow in the electron-cyclotron resonance plasma-enhanced chemical vapor deposition (ECR-PECVD) system. The presence of nitrogen in the films increases the dielectric constant value and degrades the interface quality, as our measurements demonstrate. The effect of thermal annealing has also been determined. Capacitance-voltage (C-V) results show that unannealed samples exhibit positive flat-band voltages, whereas annealed ones exhibit negative values. On the other hand, from deep-level transient spectroscopy (DLTS) measurements we can conclude that interfacial state density diminishes when thermal treatments are applied. Moreover, conductance transient analysis provides the energetic and spatial distribution of defects in the films and demonstrates that thermal improvement affects not only the interface, but also the insulator bulk.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipSpanish DGESIC
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/26120
dc.identifier.doi10.1143/JJAP.42.4978
dc.identifier.issn0021-4922
dc.identifier.officialurlhttp://dx.doi.org/10.1143/JJAP.42.4978
dc.identifier.relatedurlhttp://iopscience.iop.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/51129
dc.issue.number8
dc.journal.titleJapanese Journal of Applied Physics
dc.language.isoeng
dc.page.final4981
dc.page.initial4978
dc.publisherInst. Pure Applied Physics
dc.relation.projectIDTIC 1FD97-2085
dc.relation.projectIDTIC 98/0740
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordC-V Curves
dc.subject.keywordSilicon Oxynitride
dc.subject.keywordQuality.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleInterfacial state density and conductance-transient three-dimensional profiling of disordered-induced gap states on metal insulator semiconductor capacitors fabricated from electron-cyclotron resonance plasma-enhanced chemical vapor deposited SiOxNyHz films
dc.typejournal article
dc.volume.number42
dcterms.references1) S. V. Hattangady, H. Niimi and G. Lucovsky: J. Vac. Sci. Technol. A, 14, (1996) 3017. 2) J. I. Yeh and S. C. Lee: J. Appl. Phys., 79, (1996) 656. 3) P. V. Bulkin, P. L. Swart and B. M. Lacquet: J. Non-Cryst. Solids, 187, (1995) 484. 4) T. T. Chau, S. R. Mejia and K. C. Kao: J. Vac. Sci. Technol. B, 10, (1992) 2170. 5) P. K. Shufflebotham, D. J. Thomson and H. C. Card: J. Appl. Phys., 64, (1988) 4398. 6) A. Popov: J. Vac. Sci. Technol. A, 7, (1989) 894. 7) Á. Prado, F. L. Martínez, I. Mártil, G. González-Díaz and M. Fernández: J. Vac. Sci. Technol. A, 17, (1999) 1263. 8) Á. Prado, I. Mártil, M. Fernández and G. González-Díaz: Thin Solid Films, 343–344, (1999) 437. 9) L. He, H. Hasegawa, T. Sawada and H. Ohno: J. Appl. Phys., 63, (1988) 2120. 10) L. He, H. Hasegawa, T. Sawada and H. Ohno: Jpn. J. Appl. Phys., 27, (1988) 512. 11) E. H. Nicollian and J. R. Brews: MOS Physics and Technology (John Wiley & Sons, New York, 1982), Chap. 8. 12) S. Dueñas, R. Peláez, H. Castán, R. Pinacho, L. Quintanilla, J. Barbolla, I. Mártil and G. González-Díaz: Appl. Phys. Lett., 71, (1997) 826. 13) H. Castán, S. Dueñas, J. Barbolla, E. Redondo, N. Blanco, I. Mártil and G. González-Díaz: Microelectron. Reliab., 40, (2000) 845. 14) H. Castán, S. Dueñas and J. Barbolla: Jpn. J. Appl. Phys., 41, (2002) L1215. 15) T. Sakurai and T. Sugano: J. Appl. Phys., 52, (1981) 2889.
dspace.entity.typePublication
relation.isAuthorOfPublication6db57595-2258-46f1-9cff-ed8287511c84
relation.isAuthorOfPublicationa5ab602d-705f-4080-b4eb-53772168a203
relation.isAuthorOfPublication7a3a1475-b9cc-4071-a7d3-fbf68fe1dce0
relation.isAuthorOfPublication.latestForDiscoverya5ab602d-705f-4080-b4eb-53772168a203

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martil,50.pdf
Size:
467.96 KB
Format:
Adobe Portable Document Format

Collections