Bacillus subtilis RarA Acts as a Positive RecA Accessory Protein
Loading...
Official URL
Full text at PDC
Publication date
2020
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Frontiers
Citation
Romero, Hector, et al. «Bacillus subtilis RarA Acts as a Positive RecA Accessory Protein». Frontiers in Microbiology, vol. 11, febrero de 2020, p. 92. https://doi.org/10.3389/fmicb.2020.00092.
Abstract
Ubiquitous RarA AAAC ATPases play crucial roles in the cellular response to blocked replication forks in pro- and eukaryotes. Here, we provide evidence that absence of RarA reduced the viability of recA, recO, and recF15 cells during unperturbed growth. The rarA gene was epistatic to recO and recF genes in response to H2O2- or MMS-induced DNA damage. Conversely, the inactivation of rarA partially suppressed the HR defect
of mutants lacking end-resection (addAB, recJ, recQ, recS) or branch migration (ruvAB, recG, radA) activity. RarA contributes to RecA thread formation, that are thought to be the active forms of RecA during homology search. The absence of RarA reduced RecA accumulation, and the formation of visible RecA threads in vivo upon DNA damage. When rarA was combined with mutations in genuine RecA accessory genes, RecA accumulation was further reduced in rarA recU and rarA recX double mutant cells, and was blocked in rarA recF15 cells. These results suggest that RarA contributes to the assembly of RecA nucleoprotein filaments onto single-stranded DNA, and possibly antagonizes RecA filament disassembly.