Explicit solutions of supersymmetric KP hierarchies:
Supersolitons and solitinos
dc.contributor.author | Ibort, A. | |
dc.contributor.author | Martínez Alonso, Luis | |
dc.contributor.author | Medina Reus, Elena | |
dc.date.accessioned | 2023-06-20T20:12:21Z | |
dc.date.available | 2023-06-20T20:12:21Z | |
dc.date.issued | 1996-12 | |
dc.description | ©2001. All Rights Reserved. The authors would like to thank the financial support of CICYT under project PB92-0197 | |
dc.description.abstract | Wide classes of explicit solutions of the Manin-Radul and Jacobian supersymmetric KP hierarchies are constructed by using line bundles over complex supercurves based on the Riemann sphere. Their construction extends several ideas of the standard KP theory, such as wave functions,δ̅ equations and τ-functions. Thus, supersymmetric generalizations of N-soliton solutions, including a new purely odd ‘‘solitino’’ solution, as well as rational solutions, are found and characterized. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | CICYT, Spain | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/34488 | |
dc.identifier.doi | 10.1063/1.531770 | |
dc.identifier.issn | 0022-2488 | |
dc.identifier.officialurl | http://dx.doi.org/10.1063/1.531770 | |
dc.identifier.relatedurl | http://scitation.aip.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/59830 | |
dc.issue.number | 12 | |
dc.journal.title | Journal of mathematical physics | |
dc.language.iso | eng | |
dc.page.final | 6172 | |
dc.page.initial | 6159 | |
dc.publisher | American Institute of Physics | |
dc.relation.projectID | PB92-0197 | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 51-73 | |
dc.subject.keyword | Super-virasoro constraints | |
dc.subject.keyword | Superconformal algebra | |
dc.subject.keyword | Equations | |
dc.subject.ucm | Física-Modelos matemáticos | |
dc.subject.ucm | Física matemática | |
dc.title | Explicit solutions of supersymmetric KP hierarchies: Supersolitons and solitinos | |
dc.type | journal article | |
dc.volume.number | 37 | |
dcterms.references | 1. M. R. Douglas, Phys. Lett. B 238, 176 (1990). 2. R. Dijkgraff, H. Verlinde, and E. Verlinde, Nucl. Phys. B 348, 435 (1991). 3. V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons: the Inverse Scattering Method (Plenum, New York, 1984). 4. E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, ‘‘Transformation groups for soliton equations’’, in Nonlinear Integrable Systems–Classical and Quantum Theory, edited by M. Jimbo and T. Miwa (World Scientific, Singapore, 1983). 5. M. Sato and Y. Sato, US–Japan Seminar, Nonlinear Partial Differential Equations in Applied Sciences, edited by H. Fujita, P. D. Lax, and G. Strang (Kinokuniya/North- Holland, Amsterdam, 1982), p. 259. 6. M. F. Atiyah, The Geometry and Dynamics of Magnetic Monopoles (Princeton U. P., Princeton, NJ, 1988). 7. G. Segal and G. Wilson, Publ. Math. IHES 61, 5 (1985). 8. J. Palmer, Acta Appl. Math. 18, 199 (1990). 9. K. Ueno and H. Yamada, Adv. Stud. Pure Math. 16, 373 (1988). 10. M. Mulase, J. Diff. Geom. 34, 651 (1991). 11. J. M. Rabin, Commun. Math. Phys. 137, 533 (1991). 12. L. Álvarez-Gaumé, H. Itoyama, J. L. Mañas, and A. Zadra, Int. J. Mod. Phys. A 7, 5337 (1992). 13. L. Álvarez-Gaumé, K. Becker, M. Becker, R. Emperan, and J. Mañas, Int. J .Mod. Phys. A 8, 2297 (1993). 14. K. Becker and M. Becker, Mod. Phys. Lett. A 8, 1205 (1993). 15. Yu I. Manin and A. O. Radul, Commun. Math. Phys. 98, 65 (1985). 16. W. Oevel and Z. Popowicz, Commun. Math. Phys. 139, 41 (1990). 17. I. N. McArthur, Commun. Math. Phys. 139, 121 (1994). 18. P. Mathieu, Phys. Lett. B 203, 287 (1988). 19.A. Bilal and J. Gervais, Phys. Lett. B 211, 95 (1988). 20. M. Mañas, L. Martinez Alonso, and E. Medina, Phys. Lett. B 336, 178 (1994). 21. R. Beals and R. Coifman, Physica D 18, 242 (1986). 22. M. Jaulent, M. Manna, and L. Martínez Alonso, Inv. Prob., 4, 123 (1988). 23. L. Martínez Alonso and E. Medina, J. Math. Phys. 36, 4898 (1995). 24. K. Ueno, H. Yamada, and K. Ikeda, Commun. Math. Phys. 124, 57 (1989). 25. Y. Manin, Gauge field theory and complex geometry, Grundlehren Math. Wiss., Vol. 289 (Springer-Verlag, New York, 1988). 26. A. Rogers, Commun. Math. Phys. 105, 375 (1986). 27. G. Falqui and C. Reina, Commun. Math. Phys. 128, 247 (1990). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 896aafc0-9740-4609-bc38-829f249a0d2b | |
relation.isAuthorOfPublication.latestForDiscovery | 896aafc0-9740-4609-bc38-829f249a0d2b |
Download
Original bundle
1 - 1 of 1
Loading...
- Name:
- martinezalonso58libre.pdf
- Size:
- 802.38 KB
- Format:
- Adobe Portable Document Format