Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Explicit solutions of supersymmetric KP hierarchies: Supersolitons and solitinos

dc.contributor.authorIbort, A.
dc.contributor.authorMartínez Alonso, Luis
dc.contributor.authorMedina Reus, Elena
dc.date.accessioned2023-06-20T20:12:21Z
dc.date.available2023-06-20T20:12:21Z
dc.date.issued1996-12
dc.description©2001. All Rights Reserved. The authors would like to thank the financial support of CICYT under project PB92-0197
dc.description.abstractWide classes of explicit solutions of the Manin-Radul and Jacobian supersymmetric KP hierarchies are constructed by using line bundles over complex supercurves based on the Riemann sphere. Their construction extends several ideas of the standard KP theory, such as wave functions,δ̅ equations and τ-functions. Thus, supersymmetric generalizations of N-soliton solutions, including a new purely odd ‘‘solitino’’ solution, as well as rational solutions, are found and characterized.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipCICYT, Spain
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/34488
dc.identifier.doi10.1063/1.531770
dc.identifier.issn0022-2488
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.531770
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/59830
dc.issue.number12
dc.journal.titleJournal of mathematical physics
dc.language.isoeng
dc.page.final6172
dc.page.initial6159
dc.publisherAmerican Institute of Physics
dc.relation.projectIDPB92-0197
dc.rights.accessRightsopen access
dc.subject.cdu51-73
dc.subject.keywordSuper-virasoro constraints
dc.subject.keywordSuperconformal algebra
dc.subject.keywordEquations
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleExplicit solutions of supersymmetric KP hierarchies: Supersolitons and solitinos
dc.typejournal article
dc.volume.number37
dcterms.references1. M. R. Douglas, Phys. Lett. B 238, 176 (1990). 2. R. Dijkgraff, H. Verlinde, and E. Verlinde, Nucl. Phys. B 348, 435 (1991). 3. V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Theory of Solitons: the Inverse Scattering Method (Plenum, New York, 1984). 4. E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, ‘‘Transformation groups for soliton equations’’, in Nonlinear Integrable Systems–Classical and Quantum Theory, edited by M. Jimbo and T. Miwa (World Scientific, Singapore, 1983). 5. M. Sato and Y. Sato, US–Japan Seminar, Nonlinear Partial Differential Equations in Applied Sciences, edited by H. Fujita, P. D. Lax, and G. Strang (Kinokuniya/North- Holland, Amsterdam, 1982), p. 259. 6. M. F. Atiyah, The Geometry and Dynamics of Magnetic Monopoles (Princeton U. P., Princeton, NJ, 1988). 7. G. Segal and G. Wilson, Publ. Math. IHES 61, 5 (1985). 8. J. Palmer, Acta Appl. Math. 18, 199 (1990). 9. K. Ueno and H. Yamada, Adv. Stud. Pure Math. 16, 373 (1988). 10. M. Mulase, J. Diff. Geom. 34, 651 (1991). 11. J. M. Rabin, Commun. Math. Phys. 137, 533 (1991). 12. L. Álvarez-Gaumé, H. Itoyama, J. L. Mañas, and A. Zadra, Int. J. Mod. Phys. A 7, 5337 (1992). 13. L. Álvarez-Gaumé, K. Becker, M. Becker, R. Emperan, and J. Mañas, Int. J .Mod. Phys. A 8, 2297 (1993). 14. K. Becker and M. Becker, Mod. Phys. Lett. A 8, 1205 (1993). 15. Yu I. Manin and A. O. Radul, Commun. Math. Phys. 98, 65 (1985). 16. W. Oevel and Z. Popowicz, Commun. Math. Phys. 139, 41 (1990). 17. I. N. McArthur, Commun. Math. Phys. 139, 121 (1994). 18. P. Mathieu, Phys. Lett. B 203, 287 (1988). 19.A. Bilal and J. Gervais, Phys. Lett. B 211, 95 (1988). 20. M. Mañas, L. Martinez Alonso, and E. Medina, Phys. Lett. B 336, 178 (1994). 21. R. Beals and R. Coifman, Physica D 18, 242 (1986). 22. M. Jaulent, M. Manna, and L. Martínez Alonso, Inv. Prob., 4, 123 (1988). 23. L. Martínez Alonso and E. Medina, J. Math. Phys. 36, 4898 (1995). 24. K. Ueno, H. Yamada, and K. Ikeda, Commun. Math. Phys. 124, 57 (1989). 25. Y. Manin, Gauge field theory and complex geometry, Grundlehren Math. Wiss., Vol. 289 (Springer-Verlag, New York, 1988). 26. A. Rogers, Commun. Math. Phys. 105, 375 (1986). 27. G. Falqui and C. Reina, Commun. Math. Phys. 128, 247 (1990).
dspace.entity.typePublication
relation.isAuthorOfPublication896aafc0-9740-4609-bc38-829f249a0d2b
relation.isAuthorOfPublication.latestForDiscovery896aafc0-9740-4609-bc38-829f249a0d2b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
martinezalonso58libre.pdf
Size:
802.38 KB
Format:
Adobe Portable Document Format

Collections