Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Subfields of a real closed field of countable codimension

dc.contributor.authorGamboa Mutuberria, José Manuel
dc.date.accessioned2023-06-17T08:28:49Z
dc.date.available2023-06-17T08:28:49Z
dc.date.issued2021-05-17
dc.description.abstractLet R be a real closed field and let K be a subfield of R such that R/K is a proper algebraic extension. The main result of this paper (Theorem 2.6) states that there exists {Kn:n∈N} a countable family of countable codimension subfields of R containing K such that Ks⊆Kt if s∣t and R=⋃n∈NKn. Among other consequences of this result, it is shown that (Corollary 3.1) every real closed field contains a countable family of countable codimension subfields and (Proposition 3.7) if F is the family of all countable codimension subfields of a real closed field, then ⋂E∈FE=Q.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedFALSE
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/73990
dc.identifier.doi10.1016/j.jpaa.2021.106795
dc.identifier.issn0022-4049
dc.identifier.officialurlhttps://doi.org/10.1016/j.jpaa.2021.106795
dc.identifier.urihttps://hdl.handle.net/20.500.14352/7244
dc.issue.number12
dc.journal.titleJournal of Pure and Applied Algebra
dc.language.isoeng
dc.publisherElsevier
dc.relation.projectIDMTM2017-82105-P.
dc.rights.accessRightsopen access
dc.subject.cdu512
dc.subject.cdu512.623.3
dc.subject.keywordReal closed field
dc.subject.keywordGalois theory
dc.subject.keywordKrull topology
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleSubfields of a real closed field of countable codimension
dc.typejournal article
dc.volume.number225
dcterms.references[1] E. Artin, O. Schhreier: Algebraische Konstruction reeller Körper der reellen algebraische Zahlen. Hamb. Abh. 5, 85-99, (1926). [2] J. Bochnak, M. Coste, M.F. Roy: Real algebraic geometry. Translated from the 1987 French original. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 36. Springer-Verlag, Berlin, (1998). [3] J. Dieudonné: History of Algebraic Geometry. An Outline of the History and Development of Algebraic Geometry. Wadsworth Advanced Books, Monterey, CA. [4] J.M. Gamboa: Some new results on ordered fields. Journal of Algebra bf 110, 1-12, (1987). [5] J.M. Gamboa, T. Recio: Ordered fields with the dense orbits property. Journal of Pure and applied Algebra bf 30, 237-246, (1983). [6] N. Jacobson: Lectures in Abstract Algebra. III. Theory of fields and Galois Theory. Springer Verlag. 4. (1971). [7] H. Kestelman: Automorphisms of the ffield of complex numbers. Proc. London Math. Soc. (2), 53, 1-12, (1951). [8] S. Lang: Algebra. Addison-Wesley. Third printing. (1971). [9] D. Marker: Model theory. An introduction. Graduate Texts in Mathematics, 217 Springer-Verlag, New York. (2002). [10] P. J. Morandi: Field and Galois Theory. Graduate Texts in Mathematics, 167, Springer-Verlag, New York. (1996) [11] I. Shafarevich: Basic Algebraic Geometry. Springer-Verlag, Berlin. (1977)
dspace.entity.typePublication
relation.isAuthorOfPublication8fcb811a-8d76-49a2-af34-85951d7f3fa5
relation.isAuthorOfPublication.latestForDiscovery8fcb811a-8d76-49a2-af34-85951d7f3fa5

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
gamboa_subfields.pdf
Size:
298.61 KB
Format:
Adobe Portable Document Format

Collections