Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Controlling spin without magnetic fields: the Bloch-Rashba rotator

Loading...
Thumbnail Image

Full text at PDC

Publication date

2020

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

American Physical Society
Citations
Google Scholar

Citation

Abstract

We consider the dynamics of a quantum particle held in a lattice potential and subjected to a time-dependent spin-orbit coupling. Tilting the lattice causes the particle to perform Bloch oscillations, and by suitably changing the Rashba interaction during its motion, the spin of the particle can be gradually rotated. Even if the Rashba coupling can only be altered by a small amount, large spin rotations can be obtained by accumulating the rotation from successive oscillations. We show how the time dependence of the spin-orbit coupling can be chosen to maximize the rotation per cycle, and thus how this method can be used to produce a precise and controllable spin rotator, which we term the Bloch-Rashba rotator, without requiring an applied magnetic field.

Research Projects

Organizational Units

Journal Issue

Description

©2020 American Physical Society This work was supported by Spain's MINECO through Grant No. FIS2017-84368-P. The author thanks Toni Ramsak for introducing him to this to this problem, and Gloria Platero for stimulating discussions.

Keywords

Collections