Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Stability of conic bundles - (With an appendix by Mundet I Riera)

dc.contributor.authorSols Lucía, Ignacio
dc.contributor.authorGómez, Tomás L.
dc.date.accessioned2023-06-20T18:42:03Z
dc.date.available2023-06-20T18:42:03Z
dc.date.issued2000-11
dc.description.abstractRoughly speaking, a conic bundle is a surface, fibered over a curve, such that the fibers are conics (not necessarily smooth). We define stability for conic bundles and construct a moduli space. We prove that (after fixing some invariants) these moduli spaces are irreducible (under some conditions). Conic bundles can be thought of as generalizations of orthogonal bundles on curves. We show that in this particular case our definition of stability agrees with the definition of stability for orthogonal bundles. Finally, in an appendix by I. Mundet i Riera, a Hitchin-Kobayashi correspondence is stated for conic bundles.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/20448
dc.identifier.doi10.1142/S0129167X00000507
dc.identifier.issn0129-167X
dc.identifier.officialurlhttp://www.worldscientific.com/doi/pdf/10.1142/S0129167X00000507
dc.identifier.relatedurlhttp://www.worldscientific.com/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58349
dc.issue.number8
dc.journal.titleInternational journal of mathematics
dc.language.isoeng
dc.page.final1055
dc.page.initial1027
dc.publisherWorld Scientific
dc.rights.accessRightsopen access
dc.subject.cdu512
dc.subject.keywordPrincipal bundles
dc.subject.keywordAlgebraic-curves
dc.subject.keywordModuli
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleStability of conic bundles - (With an appendix by Mundet I Riera)
dc.typejournal article
dc.volume.number11
dcterms.referencesD. Huybrechts and M. Lehn, Framed modules and their moduli, Int. J.Math. 6 (1995), 297-324. D. Huybrechts and M. Lehn, The geometry of moduli spaces of sheaves, Aspects of Mathematics E31, Vieweg, Braunschweig/Wiesbaden, 1997. A. D. King and P. E. Newstead, Moduli of Brill-Noether pairs on algebraic curves, Int. J. Math. 6 (1995), 733-748. D. Luna, Slices étales, Bull. Soc. Math. France, Mémoire 33 (1973), 81-105. I. Mundet i Riera, A Hitchin-Kobayashi correspondence for Kaehler fibrations, math.DG/9901076 J. Murre, Lectures on an Introduction to Grothendieck's Theory of the Fundamental Group, Lecture Notes, Tata Institute of Fundamental Research, Bombay, 1967. S. Ramanan, Orthogonal and spin bundles over hyperelliptic curves, Proc. Indian Acad. Sci., Math. Sci. 90 (1981), 151-166. A. Ramanathan, Stable principal bundles on a compact Riemann surface, Math. Ann. 213 (1975), 129-152. A. Ramanathan, Moduli for principal bundles over algebraic curves: I and II, Proc. Indian Acad. Sci., Math. Sci. 106 (1996), 301-328 and 421-449. C. Simpson, Moduli of representations of the fundamental group of a smooth projective variety I, Publ. Math. I.H.E.S. 79 (1994), 47-129
dspace.entity.typePublication
relation.isAuthorOfPublication6d35def4-3d5f-4978-800f-82b7edf76b5d
relation.isAuthorOfPublication.latestForDiscovery6d35def4-3d5f-4978-800f-82b7edf76b5d

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sols08libre.pdf
Size:
309.16 KB
Format:
Adobe Portable Document Format

Collections