Selections of multivalued maps and shape domination
Loading...
Download
Full text at PDC
Publication date
1990
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Cambridge Univ Press
Citation
Abstract
Given an approximate mapping f − ={f k }:X→Y between compacta from the Hilbert cube [K. Borsuk, Fund. Math. 62 (1968), 223–254, the author associates with f − a (u.s.c.) multivalued mapping F:X→Y . If F is single-valued, F and f − induce the same shape morphism, S(F)=S(f − ) . If Y is calm [Z. Čerin, Pacific J. Math. 79 (1978), no. 1, 69–91 and all F(x) , x∈X , are sufficiently small sets, then the existence of a selection for F implies that S(f − ) is generated by some mapping X→Y . If F is associated with f − and admits a coselection (a mapping g:Y→X such that y∈F(g(y)) , for y∈Y ), then S(f − ) is a shape domination and therefore sh(Y)≤sh(X) . If Y is even an FANR, then every sufficiently small multivalued mapping F:X→Y , which admits a coselection, induces a shape domination S(F) .