Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Selections of multivalued maps and shape domination

dc.contributor.authorRodríguez Sanjurjo, José Manuel
dc.date.accessioned2023-06-20T17:03:22Z
dc.date.available2023-06-20T17:03:22Z
dc.date.issued1990-05
dc.description.abstractGiven an approximate mapping f − ={f k }:X→Y between compacta from the Hilbert cube [K. Borsuk, Fund. Math. 62 (1968), 223–254, the author associates with f − a (u.s.c.) multivalued mapping F:X→Y . If F is single-valued, F and f − induce the same shape morphism, S(F)=S(f − ) . If Y is calm [Z. Čerin, Pacific J. Math. 79 (1978), no. 1, 69–91 and all F(x) , x∈X , are sufficiently small sets, then the existence of a selection for F implies that S(f − ) is generated by some mapping X→Y . If F is associated with f − and admits a coselection (a mapping g:Y→X such that y∈F(g(y)) , for y∈Y ), then S(f − ) is a shape domination and therefore sh(Y)≤sh(X) . If Y is even an FANR, then every sufficiently small multivalued mapping F:X→Y , which admits a coselection, induces a shape domination S(F) .
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17050
dc.identifier.doi10.1017/S0305004100068778
dc.identifier.issn0305-0041
dc.identifier.officialurlhttp://journals.cambridge.org/abstract_S0305004100068778
dc.identifier.relatedurlhttp://www.cambridge.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57697
dc.issue.numberPart 3
dc.journal.titleMathematical Proceedings of the Cambridge Philosophical Society
dc.language.isoeng
dc.page.final499
dc.page.initial493
dc.publisherCambridge Univ Press
dc.rights.accessRightsrestricted access
dc.subject.cdu514
dc.subject.cdu515.1
dc.subject.keywordShape theory
dc.subject.keywordSet-valued maps
dc.subject.keywordSelections
dc.subject.ucmGeometría
dc.subject.ucmTopología
dc.subject.unesco1204 Geometría
dc.subject.unesco1210 Topología
dc.titleSelections of multivalued maps and shape domination
dc.typejournal article
dc.volume.number107
dcterms.referencesD. F. ADDIS and J. H. GRESHAM. A class of infinite dimensional spaces. Part 1: Dimension theory and Alexandroff’s problem. Fund. Math. 101 (1978), 195-205. K. BORSUK. Concerning homotopy properties of compacta. Fund. Math. 62 (1968), 223-254. K. BORSUK. Theory of Shape. Monogr. Mat. no. 59 (Polish Scientific Publishers, 1975). K. BORSUK. Some quantitative properties of shapes. Fund. Math. 93 (1976), 197-212. Z. CBRIS. Homotopy properties of locally compact spaces at infinity-calmness and smoothness. Pacific J. Math. 79 (1978), 69-91. Z. CERIN and A. P. SOSTAK. Some remarks on Borsuk's fundamental metric. In Proceedings Colloquium on Topology, Budapest 1978, Colloq. Soc. Janos Bolvay no. 23 (North-Holland, 1980). pp. 233-252 Z. CERIN and T. WATANABE. Borsuk fixed point theorem for multivalued maps. In Geometric Topology and Shape Theory (eds. S. Mardesic and J. Segal), Lecture Notes in Math. vol. 1283 (Springer-Verlag, 1987), pp. 30-37. J. DYDAK and J. SEGAL. Shape Theory: An Introduction. Lecture Notes in Math. vol. 688 (Springer-Verlag, 1978). W. E. HAVER. A covering property for metric spaces. In Proceedings of Topology Conference (eds. R. F. Dickman and P. Hatcher), Lectures Notes in Math. vol. 375 (Springer-Verlag 1974), pp. 108-113. Y. KODAMA. Multivalued maps and shape. Glasnik Mat. 12 (32) (1977), 133-142, A. KOYAMA. Various compact multi-retracts and shape theory. Tsulcuba J. Math. 6 (1982), 319-332. J. T. LISICA. Strong shape theory and multivalued maps. Glasnik Mat. 18 (38) (1983), 371-382. S. MARDESIC and J. SEGAL. Shape Theory (North Holland, 1982). J. M. R. SANJURJO. On quasi-domination of compacta. Colloq. Math. 48 (1984), 213-217. S. SPIEZ. Movability and uniform movability. Bull. Acad. Polon. Sci. Math. 22 (1974), 43-45. A. SUSZYCKI. Retracts and homotopies for multi-maps. Fund. Math. 95 (1983), 9-26.
dspace.entity.typePublication
relation.isAuthorOfPublicationf54f1d9d-37e9-4c15-9d97-e34a6343e575
relation.isAuthorOfPublication.latestForDiscoveryf54f1d9d-37e9-4c15-9d97-e34a6343e575

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
RodSanjurjo31.pdf
Size:
879.06 KB
Format:
Adobe Portable Document Format

Collections