Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Analytical method to measure bending deformations in prismatic optical films

dc.contributor.authorGarcía Fernández, Berta
dc.contributor.authorÁlvarez Fernández-Balbuena, Antonio
dc.contributor.authorVázquez Molini, Daniel
dc.date.accessioned2023-06-18T06:50:17Z
dc.date.available2023-06-18T06:50:17Z
dc.date.issued2016
dc.description© 2016 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited.
dc.description.abstractThe aim of this work is to provide an analytical method based on experimental measurements in order to obtain the prismatic film deformation for different curvatures of Hollow Cylindrical Prismatic Light Guides (CPLG). To conform cylindrical guides is necessary bend the film to guide the light, changes induced by curving the film give rise to deformation shifts. Light losses affected by deformation has been experimentally evaluated and numerically analyzed. The effect of deformation in prism angle is specially increased for CPLG of curvatures higher than 20 m-1. An experimental method for accurate transmittance measurements related to bending is presented.
dc.description.departmentSección Deptal. de Óptica (Óptica)
dc.description.facultyFac. de Óptica y Optometría
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Economia y Competitividad de España
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/35932
dc.identifier.issn1671-7694
dc.identifier.officialurlhttps://www.osapublishing.org/col/home.cfm
dc.identifier.urihttps://hdl.handle.net/20.500.14352/24359
dc.issue.number4
dc.journal.titleChinese Optics Letters
dc.language.isoeng
dc.page.initial042201
dc.publisherOSA Publishing ; Chinese Laser Press
dc.relation.projectIDHAR2012-31929
dc.rights.accessRightsopen access
dc.subject.cdu535.36
dc.subject.keywordTesting
dc.subject.keywordPrisms
dc.subject.keywordTotal internal reflection
dc.subject.keywordImage analysis
dc.subject.ucmÓptica (Física)
dc.subject.ucmÓptica no líneal
dc.subject.unesco2209.19 Óptica Física
dc.subject.unesco2209.13 Óptica no lineal
dc.titleAnalytical method to measure bending deformations in prismatic optical films
dc.typejournal article
dc.volume.number14
dcterms.references1. M. Wang, M. W., & C.C. Tseng. “Analysis and fabrication of a prism film with roll-to-roll fabrication process”. Optics express, 17(6), 4718-4725 (2009). 2. E. J. Gago, T. Muneer, M. Knez, & H. Köster, “Natural light controls and guides in buildings. Energy saving for electrical lighting, reduction of cooling load”, Renewable and Sustainable Energy Reviews, 41, 1-13 (2015). 3. I. Edmonds, “Transmission of mirror light pipes with triangular, rectangular, rhombic and hexagonal cross section”. Solar Energy, 84(6), 928-938 (2010). 4. L. A. Whitehead, “Simplified ray racing in cylindrical systems”, Applied Optics, 21(19): 3536-3538 (1982). 5. D. Vázquez-Moliní, A. Álvarez Fernández-Balbuena and B. García-Fernández, “Natural lighting systems based on dielectric prism,” in Dielectric Material, M. Alexandru Silagh (Intech, 2012), pp 155-180, Chap. 7. 6. A. Rosemann, G. Cox, P Friedel, M. Mossman, L. A. Whitehead, “Cost-effective controlled illumination using daylighting and electric lighting in a dual-function prism light guide” Lighting Research and Technology 40 pp 1 77-88 (2008). 7. B. García-Fernández, D. Vázquez-Molini, & A.A. Fernández-Balbuena, “Lighting quality for aluminum and prismatic light guides”. In SPIE Optical Systems Design (pp. 81700T-81700T). International Society for Optics and Photonics. (2011, September). 8. M. S. Mayhoub, “Innovative daylighting systems challenges: A critical study”, Energy and Buildings, 80, 394-405. (2014). 9. L. A. Whitehead, R. A. Nodwell, and F. L. Curzon, Appl. Opt. 21, 2755 (1982). 10. B. García-Fernández, D. Vázquez-Moliní, A. Á. Fernández-Balbuena, A García-Botella, and Juan Carlos Martínez Antón, "Light losses in hollow, prismatic light guides related to prism defects: a transmittance model," Chin. Opt. Lett. 13, 092201- (2015) 11. P.V.C. Hough, “Methods and means for recognizing complex patterns,” U.S. Patent 3,069,654 (Dec. 18, 1962). 12. J. Canny, “A computational approach to edge detection,” in IEEE Trans. Pattern Analysis and Machine Intelligence (IEEE, 1986), 8(6):679–698. 13. TracePro® Opto-Mechanical Design Software. 14. L. A. Whitehead, Wei Su, and Dmitri N. Grandmaison, “Evaluation of diffraction loss in prism light guides by finite-difference time-domain field modeling,” Applied Optics, 37, 25, 5836-5842 (1998). 15. L. A. Whitehead, P. Dosanjh, and P. Kan, "High-Efficiency Prism Light Guides with. Confocal Parabolic Cross Sections," Appl. Opt. 37, 5227-5233 (1998).
dspace.entity.typePublication
relation.isAuthorOfPublication66947707-bb8e-476d-8178-cd98a8796992
relation.isAuthorOfPublication304d36ea-328b-4b93-843f-a5f0da3323f8
relation.isAuthorOfPublication.latestForDiscovery66947707-bb8e-476d-8178-cd98a8796992

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2016-Analytical method to measure bending deformations in prismatic optical films FIN.pdf
Size:
755.36 KB
Format:
Adobe Portable Document Format

Collections