Publication:
Blood glucose prediction using multi-objective grammatical evolution: analysis of the “agnostic” and “what-if” scenarios

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2021-11-18
Authors
Contador, Sergio
Colmenar, J. Manuel
Garnica Alcázar, Oscar
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Nature
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
In this paper we investigate the benefts of applying a multi-objective approach for solving a symbolic regression problem by means of Grammatical Evolution. In particular, we extend previous work, obtaining mathematical expressions to model glucose levels in the blood of diabetic patients. Here we use a multi-objective Grammatical Evolution approach based on the NSGA-II algorithm, considering the root-mean-square error and an ad-hoc ftness function as objectives. This ad-hoc function is based on the Clarke Error Grid analysis, which is useful for showing the potential danger of mispredictions in diabetic patients. In this work, we use two datasets to analyse two diferent scenarios: What-if and Agnostic, the most common in daily clinical practice. In the What-if scenario, where future events are evaluated, results show that the multi-objective approach improves previous results in terms of Clarke Error Grid analysis by reducing the number of dangerous mispredictions. In the Agnostic situation, with no available information about future events, results suggest that we can obtain good predictions with only information from the previous hour for both Grammatical Evolution and Multi-Objective Grammatical Evolution.
Description
CRUE-CSIC (Acuerdos Transformativos 2021)
Keywords
Citation
Collections