Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Blood glucose prediction using multi-objective grammatical evolution: analysis of the “agnostic” and “what-if” scenarios

dc.contributor.authorContador, Sergio
dc.contributor.authorColmenar, J. Manuel
dc.contributor.authorGarnica Alcázar, Antonio Óscar
dc.contributor.authorVelasco Cabo, José Manuel
dc.contributor.authorHidalgo Pérez, José Ignacio
dc.date.accessioned2023-06-16T14:20:07Z
dc.date.available2023-06-16T14:20:07Z
dc.date.issued2021-11-18
dc.descriptionCRUE-CSIC (Acuerdos Transformativos 2021)
dc.description.abstractIn this paper we investigate the benefts of applying a multi-objective approach for solving a symbolic regression problem by means of Grammatical Evolution. In particular, we extend previous work, obtaining mathematical expressions to model glucose levels in the blood of diabetic patients. Here we use a multi-objective Grammatical Evolution approach based on the NSGA-II algorithm, considering the root-mean-square error and an ad-hoc ftness function as objectives. This ad-hoc function is based on the Clarke Error Grid analysis, which is useful for showing the potential danger of mispredictions in diabetic patients. In this work, we use two datasets to analyse two diferent scenarios: What-if and Agnostic, the most common in daily clinical practice. In the What-if scenario, where future events are evaluated, results show that the multi-objective approach improves previous results in terms of Clarke Error Grid analysis by reducing the number of dangerous mispredictions. In the Agnostic situation, with no available information about future events, results suggest that we can obtain good predictions with only information from the previous hour for both Grammatical Evolution and Multi-Objective Grammatical Evolution.
dc.description.departmentDepto. de Arquitectura de Computadores y Automática
dc.description.facultyFac. de Informática
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)/FEDER
dc.description.sponsorshipComunidad de Madrid/FEDER
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/70578
dc.identifier.doi10.1007/s10710-021-09424-6
dc.identifier.issn1389-2576
dc.identifier.officialurlhttps://doi.org/10.1007/s10710-021-09424-6
dc.identifier.urihttps://hdl.handle.net/20.500.14352/4724
dc.journal.titleGenetic Programming and Evolvable Machines
dc.language.isoeng
dc.publisherSpringer Nature
dc.relation.projectIDRTI2018-095180-B-I00 and PGC2018-095322-B-C22;
dc.relation.projectIDGenObIA-CM (B2017/BMD3773); Micro-Stress- MAP-CM (Y2018/NMT4668); CYNAMON-CM ( P2018/TCS-4566)
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.keywordGrammatical evolution
dc.subject.keywordMulti-objective optimization
dc.subject.keywordGlucose prediction
dc.subject.keywordDiabetes
dc.subject.ucmInformática (Informática)
dc.subject.ucmProgramación de ordenadores (Informática)
dc.subject.unesco1203.17 Informática
dc.subject.unesco1203.23 Lenguajes de Programación
dc.titleBlood glucose prediction using multi-objective grammatical evolution: analysis of the “agnostic” and “what-if” scenarios
dc.typejournal article
dspace.entity.typePublication
relation.isAuthorOfPublication33d1dfc8-7bd7-4f4d-ac77-e9c369e8d82e
relation.isAuthorOfPublicationce8731c7-a3bb-4010-98d9-e9b72622941b
relation.isAuthorOfPublication981f825f-2880-449a-bcfc-686b866206d0
relation.isAuthorOfPublication.latestForDiscoveryce8731c7-a3bb-4010-98d9-e9b72622941b

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Contador2021_Article_BloodGlucosePredictionUsingMul.pdf
Size:
2.87 MB
Format:
Adobe Portable Document Format

Collections