Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Uncertainty Estimation by Convolution Using Spatial Statistics

Loading...
Thumbnail Image

Full text at PDC

Publication date

2006

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

IEEE Institute of Electrical and Electronics Engineers
Citations
Google Scholar

Citation

Abstract

Kriging has proven to be a useful tool in image processing since it behaves, under regular sampling, as a convolution. Convolution kernels obtained with kriging allow noise filtering and include the effects of the random fluctuations of the experimental data and the resolution of the measuring devices. The uncertainty at each location of the image can also be determined using kriging. However, this procedure is slow since, currently, only matrix methods are available. In this work, we compare the way kriging performs the uncertainty estimation with the standard statistical technique for magnitudes without spatial dependence. As a result, we propose a much faster technique, based on the variogram, to determine the uncertainty using a convolutional procedure. We check the validity of this approach by applying it to one-dimensional images obtained in diffractometry and two-dimensional images obtained by shadow moire.

Research Projects

Organizational Units

Journal Issue

Description

© IEEE. The work of L. M. Sánchez-Brea was supported by the Ministerio de Educación y Ciencia of Spain, within the ”Ramón y Cajal” program. The associate editor coordinating the review of this manuscript and approving it for publication was Dr. Til Aach. The authors thank Dr. J. Zoido, Dr. J. A. Quiroga, Dr. J. Alda, and Dr. A. Luis for their help and fruitful discussions.

UCM subjects

Keywords

Collections