Proton decay in a nucleus: nonrelativistic treatment of nuclear effects

Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Amer Physical Soc
Google Scholar
Research Projects
Organizational Units
Journal Issue
In this paper, proton decay in a large nucleus is studied in the framework of SU(5) grand unification theory (GUT). By using a method based upon the Green s-function technique of many-body physics, nuclear effects on spectator and pole terms are computed. The decay width in the nucleus is found to be practically the same as in free space. However, nuclear effects are of considerable importance concerning the positron spectrum. A densitycorrelation expansion is introduced which is useful for carrying out a systematic study of nuclear effects in proton decay in a large nucleus. The method presented here can be easily extended to other GUT's or supersymmetric GUT's.
© 1983 The American Physical Society. We thank Dr. E. Oset for a useful discussion on pions in nuclear matter. Partial financial support from the Comision Asesora de Investigacion Cientifica (Spain) is gratefully acknowledged.
Unesco subjects
1 A comprehensive review is P. Langacker, Phys. Rep. 72, 185 (1981). See also W. J. Marciano, BNL Report No. 31036 (unpublished). 2 J. M. F. de Labastida and F. J. Yndurain, Phys. Rev. Lett. 47, 110 (1981). 3 R. F. Álvarez-Estrada and J. L. Sánchez-Gómez, Phys. Rev. D 26, 175 (1982). 4 C. B. Dover, M. Goldhaber, T. L. Trueman, and Ling-Lie Chau, Phys. Rev. D 24, 2886 (1981). 5 J. Arafune and O. Miyamura, Frog. Theor. Phys. 66, 661 (1981). 6 B. Ioffe, Nucl. Phys. B188, 317 (1981). 7 See, for instance, W. Zimmermann, Nuovo Cimento 10, 597 (1958). 8 A. W. Thomas and B. H. J. McKellar, Report No. CERN Th-3376, 1982 (unpublished). 9 V. S. Berezinsky, B. L. Ioffe, and Ya. I. Kogan, Phys. Lett. 105B, 33 (1981). See also N. V. Krasnikov et al. , Report No. CERN Th-3422, 1982 (unpublished). 10 M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Nucl. Phys. B147, 385 (1979);B147, 448 (1979). 11 S. Meljanac, D. Palle, I. Picek, and D. Tadic, Nucl. Phys. B206, 298 (1982). For a recent computation of the pole term in the framework of the MIT bag model, see J. F. Donoghue and E. Golowich, Phys. Rev. D 26, 3092 (1982). 12 S. Théberge, A. W. Thomas, and G. A. Miller, Phys. Rev. D 22, 2838 (1980). Also, A. W. Thomas, S. Theberge, and G. A. Miller, ibid. 24, 216 (1981). 13 E. Oset and A. Palanques-Mestre, Nucl. Phys. A359, 289 (1981). 14 A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971). 15 C. A. Domínguez, Phys. Rev. C 24, 2611 (1981). Notice that this form factor is rather different from the CBM one in the considered kinematic region. 16 A treatment of (real) pion attenuation after nucleon decay in a nucleus can be found in D. A. Sparrow, Phys. Rev. Lett. 44, 625 (1980). 17 See, for instance, L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon, London, 1958), Chap. 7.