This is not the latest version of this item. The latest version can be found here.
Publication: Positive Solutions for Slightly Subcritical Elliptic Problems Via Orlicz Spaces
Loading...
Official URL
Full text at PDC
Publication Date
2022-04-25
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Birkhäuser
Abstract
This paper concerns semilinear elliptic equations involving sign-changing weight function and a nonlinearity of subcritical nature understood in a generalized sense. Using an Orlicz–Sobolev space setting, we consider superlinear nonlinearities which do not have a polynomial growth, and state sufficient conditions guaranteeing the Palais–Smale condition. We study the existence of a bifurcated branch of classical positive solutions, containing a turning point, and providing multiplicity of solutions.
Description
CRUE-CSIC (Acuerdos Transformativos 2022)
UCM subjects
Unesco subjects
Keywords
Citation
[1] Alama, S., Tarantello, G.: On semilinear elliptic problems with indefinite nonlinearities. Cal. Var. 1, 439–475 (1993)
[2] Brézis, H.: Functional analysis, Sobolev spaces and partial differential equations, Universitext. Springer, New York (2011)
[3] Brézis, H., Kato, T.: Remarks on the Schrödinger operator with singular complex potentials. J. Math. Pures Appl. (9) 58(2), 137–151 (1979)
[4] Brézis, H., Nirenberg, L.: H1 versus C1 local minimizers. C. R. Acad. Sci. Paris Sér. I Math. 317(5), 465–472 (1993)
[5] Castro, A., Pardo, R.: A priori bounds for Positive Solutions of Subcritical Elliptic Equations. Revista Matemática Complutense 28, 715–731 (2015)
[6] Castro, A., Pardo, R.: A priori estimates for positive solutions to subcritical elliptic problems in a class of non-convex regions. Discrete Contin. Dyn. Syst.-Ser. B 22(3), 783–790 (2017)
[7] Castro, A., Mavinga, N., Pardo, R.: Equivalence between uniform L2∗(Ω) a-priori bounds and uniform L∞(Ω) a-priori bounds for subcritical elliptic equations. Topol. Methods Nonlinear Anal. 53(1), 43–56 (2019)
[8] Chang, K.-C., Jiang, M.-Y.: Dirichlet problem with indefinite nonlinearities. Calc. Var. Partial Differ. Equ. 20(3), 257–282 (2004)
[9] Clapp, M., Pardo, R., Pistoia, A., Saldaña, A.: A solution to a slightly subcritical elliptic problem with non-power nonlinearity. J. Differ. Equ. 275, 418–446 (2021)
[10] Crandall, M.G., Rabinowitz, P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)
[11] Damascelli, L., Pardo, R.: A priori estimates for some elliptic equations involving the p-Laplacian. Nonlinear Anal.: Real World Appl. 41, 475–496 (2018)
[12] de Figueiredo, D. G.: Lectures on the Ekeland variational principle with applications and detours, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 81 Springer-Verlag, Berlin (1989)
[13] Donaldson, D.K., Trudinger, N.S.: Orlicz-Sobolev spaces and embedding theorems. J. Funct. Anal. 8, 52–75 (1971)
[14] Evans, L.C.: Partial differential equations. Second edition. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI (2010)
[15] Krasnoselskii, M.A., Rutickiı, J.B.: Convex functions and Orlicz Spaces. Transl. first Russian edition by Leo F. Boron. P. Noordhoff Ltd., Groningen (1961)
[16] Mavinga, N., Pardo, R.: A priori bounds and existence of positive solutions for semilinear elliptic systems. J. Math. Anal. Appl. 449(2), 1172–1188 (2017)
[17] Moser, J.: A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations. Comm. Pure Appl. Math. 13, 457–468 (1960)
[18] Natanson, I.P.: Theory of functions of a real variable. Vol. 1 (1964)
[19] Rabinowitz, P.H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7, 487–513 (1971)
[20] Ramos, M., Terracini, S., Troestler, C.: Superlinear indefinite elliptic problems and Pohozaev type identities. J. Funct. Anal. 159(2), 596–628 (1998)
[21] Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, 146 Marcel Dekker, Inc., New York (1991)
[22] Struwe, M.: Variational methods, Applications to nonlinear partial differential equations and Hamiltonian systems, A Series of Modern Surveys in Mathematics, 34. SpringerVerlag, Berlin (2008)
[23] Tehrani, H.: Infinitely many solutions for an indefinite semilinear elliptic problem in RN . Adv. Differ. Equ. 5(10–12), 1571–1596 (2010)