Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Positive Solutions for Slightly Subcritical Elliptic Problems Via Orlicz Spaces

dc.contributor.authorCuesta, Mabel
dc.contributor.authorPardo San Gil, Rosa
dc.date.accessioned2023-06-22T10:47:14Z
dc.date.available2023-06-22T10:47:14Z
dc.date.issued2022-04-25
dc.descriptionCRUE-CSIC (Acuerdos Transformativos 2022)
dc.description.abstractThis paper concerns semilinear elliptic equations involving sign-changing weight function and a nonlinearity of subcritical nature understood in a generalized sense. Using an Orlicz–Sobolev space setting, we consider superlinear nonlinearities which do not have a polynomial growth, and state sufficient conditions guaranteeing the Palais–Smale condition. We study the existence of a bifurcated branch of classical positive solutions, containing a turning point, and providing multiplicity of solutions.
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipUniversidad Complutense de Madrid/Banco de Santander
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/72921
dc.identifier.doi10.1007/s00032-022-00354-1
dc.identifier.issn1424-9286
dc.identifier.relatedurlhttps://link.springer.com/article/10.1007/s00032-022-00354-1
dc.identifier.urihttps://hdl.handle.net/20.500.14352/71664
dc.journal.titleMilan Journal of Mathematics
dc.language.isoeng
dc.publisherBirkhäuser
dc.relation.projectIDPID2019-103860GB-I00
dc.relation.projectIDGR58/08 (Grupo 920894)
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu515.14
dc.subject.keywordPositive solutions
dc.subject.keywordSubcritical nonlinearity
dc.subject.keywordChanging sign weight.
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.titlePositive Solutions for Slightly Subcritical Elliptic Problems Via Orlicz Spaces
dc.typejournal article
dcterms.references[1] Alama, S., Tarantello, G.: On semilinear elliptic problems with indefinite nonlinearities. Cal. Var. 1, 439–475 (1993) [2] Brézis, H.: Functional analysis, Sobolev spaces and partial differential equations, Universitext. Springer, New York (2011) [3] Brézis, H., Kato, T.: Remarks on the Schrödinger operator with singular complex potentials. J. Math. Pures Appl. (9) 58(2), 137–151 (1979) [4] Brézis, H., Nirenberg, L.: H1 versus C1 local minimizers. C. R. Acad. Sci. Paris Sér. I Math. 317(5), 465–472 (1993) [5] Castro, A., Pardo, R.: A priori bounds for Positive Solutions of Subcritical Elliptic Equations. Revista Matemática Complutense 28, 715–731 (2015) [6] Castro, A., Pardo, R.: A priori estimates for positive solutions to subcritical elliptic problems in a class of non-convex regions. Discrete Contin. Dyn. Syst.-Ser. B 22(3), 783–790 (2017) [7] Castro, A., Mavinga, N., Pardo, R.: Equivalence between uniform L2∗(Ω) a-priori bounds and uniform L∞(Ω) a-priori bounds for subcritical elliptic equations. Topol. Methods Nonlinear Anal. 53(1), 43–56 (2019) [8] Chang, K.-C., Jiang, M.-Y.: Dirichlet problem with indefinite nonlinearities. Calc. Var. Partial Differ. Equ. 20(3), 257–282 (2004) [9] Clapp, M., Pardo, R., Pistoia, A., Saldaña, A.: A solution to a slightly subcritical elliptic problem with non-power nonlinearity. J. Differ. Equ. 275, 418–446 (2021) [10] Crandall, M.G., Rabinowitz, P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971) [11] Damascelli, L., Pardo, R.: A priori estimates for some elliptic equations involving the p-Laplacian. Nonlinear Anal.: Real World Appl. 41, 475–496 (2018) [12] de Figueiredo, D. G.: Lectures on the Ekeland variational principle with applications and detours, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 81 Springer-Verlag, Berlin (1989) [13] Donaldson, D.K., Trudinger, N.S.: Orlicz-Sobolev spaces and embedding theorems. J. Funct. Anal. 8, 52–75 (1971) [14] Evans, L.C.: Partial differential equations. Second edition. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI (2010) [15] Krasnoselskii, M.A., Rutickiı, J.B.: Convex functions and Orlicz Spaces. Transl. first Russian edition by Leo F. Boron. P. Noordhoff Ltd., Groningen (1961) [16] Mavinga, N., Pardo, R.: A priori bounds and existence of positive solutions for semilinear elliptic systems. J. Math. Anal. Appl. 449(2), 1172–1188 (2017) [17] Moser, J.: A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations. Comm. Pure Appl. Math. 13, 457–468 (1960) [18] Natanson, I.P.: Theory of functions of a real variable. Vol. 1 (1964) [19] Rabinowitz, P.H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7, 487–513 (1971) [20] Ramos, M., Terracini, S., Troestler, C.: Superlinear indefinite elliptic problems and Pohozaev type identities. J. Funct. Anal. 159(2), 596–628 (1998) [21] Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, 146 Marcel Dekker, Inc., New York (1991) [22] Struwe, M.: Variational methods, Applications to nonlinear partial differential equations and Hamiltonian systems, A Series of Modern Surveys in Mathematics, 34. SpringerVerlag, Berlin (2008) [23] Tehrani, H.: Infinitely many solutions for an indefinite semilinear elliptic problem in RN . Adv. Differ. Equ. 5(10–12), 1571–1596 (2010)
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cuesta-Pardo2022_Article_PositiveSolutionsForSlightlySu.pdf
Size:
522.91 KB
Format:
Adobe Portable Document Format

Collections

Version History

Now showing 1 - 2 of 2
VersionDateSummary
2023-09-29 13:06:53
Correction to: Positive Solutions for Slightly Subcritical Elliptic Problems Via Orlicz Spaces
1*
2023-06-22 12:47:14
* Selected version