Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Enhancing Extraction of Drug-Drug Interaction from Literature Using Neutral Candidates, Negation, and Clause Dependency

Loading...
Thumbnail Image

Full text at PDC

Publication date

2016

Advisors (or tutors)

Journal Title

Journal ISSN

Volume Title

Publisher

Citations
Google Scholar

Citation

Abstract

Motivation Supervised biomedical relation extraction plays an important role in biomedical natural language processing, endeavoring to obtain the relations between biomedical entities. Drug-drug interactions, which are investigated in the present paper, are notably among the critical biomedical relations. Thus far many methods have been developed with the aim of extracting DDI relations. However, unfortunately there has been a scarcity of comprehensive studies on the effects of negation, complex sentences, clause dependency, and neutral candidates in the course of DDI extraction from biomedical articles. Results Our study proposes clause dependency features and a number of features for identifying neutral candidates as well as negation cues and scopes. Furthermore, our experiments indicate that the proposed features significantly improve the performance of the relation extraction task combined with other kernel methods. We characterize the contribution of each category of features and finally conclude that neutral candidate features have the most prominent role among all of the three categories.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections