Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

The spin Sutherland model of D-N type and its associated spin chain

dc.contributor.authorBasu-Mallick, B.
dc.contributor.authorFinkel Morgenstern, Federico
dc.contributor.authorGonzález López, Artemio
dc.date.accessioned2023-06-20T03:55:20Z
dc.date.available2023-06-20T03:55:20Z
dc.date.issued2011-02-11
dc.description©2010 Elsevier B.V. All rights reserved. This work was supported in part by the MICINN and the UCM–Banco Santander under Grants Nos. FIS2008-00209 and GR58/08-910556. The authors would also like to thank A. Enciso for several helpful discussions.
dc.description.abstractIn this paper we study the su(m) spin Sutherland (trigonometric) model of D-N type and its related spin chain of Haldane-Shastry type obtained by means of Polychronakos's freezing trick. As in the rational case recently studied by the authors, we show that these are new models, whose properties cannot be simply deduced from those of their well-known BCN counterparts by taking a suitable limit. We identify the Weyl-invariant extended configuration space of the spin dynamical model, which turns out to be the N-dimensional generalization of a rhombic dodecahedron. This is in fact one of the reasons underlying the greater complexity of the models studied in this paper in comparison with both their rational and BCN counterparts. By constructing a non-orthogonal basis of the Hilbert space of the spin dynamical model on which its Hamiltonian acts triangularly, we compute its spectrum in closed form. Using this result and applying the freezing trick, we derive an exact expression for the partition function of the associated Haldane-Shastry spin chain of D-N type.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMICINN
dc.description.sponsorshipUCM–Banco Santander
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/31277
dc.identifier.doi10.1016/j.nuclphysb.2010.10.005
dc.identifier.issn0550-3213
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.nuclphysb.2010.10.005
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44672
dc.issue.number3
dc.journal.titleNuclear physics B
dc.language.isoeng
dc.page.final533
dc.page.initial505
dc.publisherElsevier
dc.relation.projectIDFIS2008-00209
dc.relation.projectIDGR58/08-910556
dc.rightsAtribución 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/es/
dc.subject.cdu51-73
dc.subject.keywordExactly solvable spin models
dc.subject.keywordSpin chains
dc.subject.keywordDunkl operators
dc.subject.ucmFísica-Modelos matemáticos
dc.subject.ucmFísica matemática
dc.titleThe spin Sutherland model of D-N type and its associated spin chain
dc.typejournal article
dc.volume.number843
dcterms.references[1] F. Calogero, J. Math. Phys. 12 (1971) 419–436. [2] B. Sutherland, Phys. Rev. A 4 (1971) 2019–2021. [3] B. Sutherland, Phys. Rev. A 5 (1972) 1372–1376. [4] M.A. Olshanetsky, A.M. Perelomov, Phys. Rep. 94 (1983) 313–404. [5] F.D.M. Haldane, Phys. Rev. Lett. 60 (1988) 635–638. [6] B.S. Shastry, Phys. Rev. Lett. 60 (1988) 639–642. [7] A.P. Polychronakos, Phys. Rev. Lett. 70 (1993) 2329–2331. [8] Z.N.C. Ha, Quantum Many-body Systems in One Dimension, Advances in Statistical Mechanics, vol. 12, Singapore, World Scientific, 1996. [9] M.V.N. Murthy, R. Shankar, Phys. Rev. Lett. 73 (1994) 3331–3334. [10] A.P. Polychronakos, J. Phys. A: Math. Gen. 39 (2006) 12793–12845. [11] H. Azuma, S. Iso, Phys. Lett. B 331 (1994) 107–113. [12] C.W.J. Beenakker, B. Rajaei, Phys. Rev. B 49 (1994) 7499–7510. [13] M. Caselle, Phys. Rev. Lett. 74 (1995) 2776–2779. [14] P. Claus, M. Derix, R. Kallosh, J. Kumar, P. Townsend, A.V. Proeyen, Phys. Rev. Lett. 81 (1998) 4553–4556. [15] T.R. Govindarajan, V. Suneeta, S. Vaidya, Nucl. Phys. B 583 (2000) 291–303. [16] G.W. Gibbons, P.K. Townsend, Phys. Lett. B 454 (1999) 187–192. [17] N. Beisert, C. Kristjansen, M. Staudacher, Nucl. Phys. B 664 (2003) 131–184. [18] N. Beisert, Nucl. Phys. B 682 (2004) 487–520. [19] T. Bargheer, N. Beisert, F. Loebbert, J. Phys. A: Math. Theor. 42 (2009) 285205(58). [20] N. Taniguchi, B.S. Shastry, B.L. Altshuler, Phys. Rev. Lett. 75 (1995) 3724–3727. [21] P.J. Forrester, Nucl. Phys. B 416 (1994) 377–385. [22] T.H. Baker, P.J. Forrester, Commun. Math. Phys. 188 (1997) 175–216. [23] J.F. van Diejen, Commun. Math. Phys. 188 (1997) 467–497. [24] H. Ujino, M. Wadati, J. Phys. Soc. Jpn. 66 (1997) 345–350. [25] C.F. Dunkl, Commun. Math. Phys. 197 (1998) 451–487. [26] F. Finkel, D. Gómez-Ullate, A. González-López, M.A. Rodríguez, R. Zhdanov, Commun. Math. Phys. 221 (2001) 477–497. [27] D. Bernard, M. Gaudin, F.D.M. Haldane, V. Pasquier, J. Phys. A: Math. Gen. 26 (1993) 5219–5236. [28] K. Hikami, Nucl. Phys. B 441 (1995) 530–548. [29] B. Basu-Mallick, Nucl. Phys. B 540 (1999) 679–704. [30] N. Beisert, D. Erkal, J. Stat. Mech. 0803 (2008) P03001. [31] Z.N.C. Ha, F.D.M. Haldane, Phys. Rev. B 46 (1992) 9359–9368. [32] K. Hikami, M. Wadati, J. Phys. Soc. Jpn. 62 (1993) 469–472. [33] J.A. Minahan, A.P. Polychronakos, Phys. Lett. B 302 (1993) 265–270. [34] B. Sutherland, B.S. Shastry, Phys. Rev. Lett. 71 (1993) 5–8. [35] H. Frahm, J. Phys. A: Math. Gen. 26 (1993) L473–L479. [36] A.P. Polychronakos, Nucl. Phys. B 419 (1994) 553–566. [37] F. Finkel, A. González-López, Phys. Rev. B 72 (2005) 174411(6). [38] D. Bernard, V. Pasquier, D. Serban, Europhys. Lett. 30 (1995) 301–306. [39] T. Yamamoto, Phys. Lett. A 208 (1995) 293–302. [40] T. Yamamoto, O. Tsuchiya, J. Phys. A: Math. Gen. 29 (1996) 3977–3984. [41] E. Corrigan, R. Sasaki, J. Phys. A: Math. Gen. 35 (2002) 7017–7061. [42] A. Enciso, F. Finkel, A. González-López, M.A. Rodríguez, Nucl. Phys. B 707 (2005) 553–576. [43] J.C. Barba, F. Finkel, A. González-López, M.A. Rodríguez, Phys. Rev. B 77 (2008) 214422(10). [44] B. Basu-Mallick, F. Finkel, A. González-López, Nucl. Phys. B 812 (2009) 402–423. [45] B. Simon, Ann. Inst. H. Poincaré Sect. A (N.S.) 38 (1983) 295–308. [46] S. Ahmed, M. Bruschi, F. Calogero, M.A. Olshanetsky, A.M. Perelomov, Nuovo Cimento B 49 (1979) 173–199. [47] G. Szegö, Orthogonal Polynomials, 4th edition, Amer. Math. Soc., Providence, RI, 1975. [48] S. Odake, R. Sasaki, J. Phys. A: Math. Gen. 35 (2002) 8283–8314. [49] J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. [50] H.S.M. Coxeter, Regular Polytopes, third edition, Dover, New York, 1973. [51] B. Fuglede, J. Funct. Anal. 16 (1974) 101–121. [52] F. Finkel, D. Gómez-Ullate, A. González- López, M.A. Rodríguez, R. Zhdanov, Commun. Math. Phys. 233 (2003) 191–209. [53] J.C. Barba, F. Finkel, A. González-López, M.A. Rodríguez, in preparation. [54] F.D.M. Haldane, Z.N.C. Ha, J.C. Talstra, D. Bernard, V. Pasquier, Phys. Rev. Lett. 69 (1992) 2021–2025. [55] A. Enciso, F. Finkel, A. González-López, On the level density of spin chains of Haldane– Shastry type, arXiv:1005.3202v1 [math-ph], 2010. [56] J.C. Barba, F. Finkel, A. González-López, M.A. Rodríguez, Europhys. Lett. 83 (2008) 27005(6). [57] J.C. Barba, F. Finkel, A. González-López, M.A. Rodríguez, Phys. Rev. E 80 (2009) 047201(4). [58] B. Basu-Mallick, N. Bondyopadhaya, Nucl. Phys. B 757 (2006) 280–302. [59] B. Basu-Mallick, N. Bondyopadhaya, Phys. Lett. A 373 (2009) 2831–2836.
dspace.entity.typePublication
relation.isAuthorOfPublication207092a4-0443-4336-a037-15936f8acc25
relation.isAuthorOfPublication7f260dbe-eebb-4d43-8ba9-d8fbbd5b32fc
relation.isAuthorOfPublication.latestForDiscovery207092a4-0443-4336-a037-15936f8acc25

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Finkel03.pdf
Size:
327.9 KB
Format:
Adobe Portable Document Format

Collections