Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Un algoritmo rápido para evaluar la función de verosimilitud exacta de modelos VARMAX periódicos

dc.contributor.authorCasals Carro, José
dc.contributor.authorSotoca López, Sonia
dc.contributor.authorJerez Méndez, Miguel
dc.date.accessioned2023-06-21T01:37:49Z
dc.date.available2023-06-21T01:37:49Z
dc.date.issued1998
dc.description.abstractEn este trabajo se deriva un algoritmo rápido para evaluar la función de verosimilitud exacta de procesos VARMAX periódicos. Su eficiencia computacional se consigue combinando una formulación de dimensión mínima en espacio de los estados, en forma steady-state innovations y un procedimiento para evaluar la función de verosimilitud exacta que aprovecha las propiedades de esta representación. El algoritmo es aplicable a modelos estacionarios y no estacionarios, con variables exógenas estocásticas y/o deterministas y facilita el cálculo de los segundos momentos exactos de las estimaciones. Por otra parte, la representación utilizada permite tratar casos no considerados en la literatura, como procesos periódicos multivariantes, y admite estructuras dinámicas no homogéneas y muestras con distinto número de observaciones en cada estación. Asimismo, es inmediatamente aplicable a cualquier caso de variación paramétrica determinista. Algunas pruebas con datos simulados ponen de manifiesto el buen funcionamiento del algoritmo.
dc.description.abstractIn this work we derive a fast algorithm to compute the exact likelibood function of periodic VARMAX processes. Its computational efficiency is achieved by combining a minimal dimension state-space formulation, in steady-state innovations form, and a procedure for computing the exact likelihood function which takes advantage of the properties of this representation. The algorithm can be applied to stationary and non-stationary models, allows for deterministic and/or stochastic exogenous variables and makes easy the computation of the exact second-order moments of the estimates. On the other hand, our approach includes representations not considered by the literature, like multivariate periodic processes, and allows for nonhomogeneous dynamic structures and different number of observations in each season. Besides, it can be applied to any model with deterministic parameter variation. Some results with simulated data illustrate the good behaviour of the algorithm.
dc.description.facultyFac. de Ciencias Económicas y Empresariales
dc.description.facultyInstituto Complutense de Análisis Económico (ICAE)
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/28791
dc.identifier.relatedurlhttp://www.ucm.es/icae
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64203
dc.issue.number02
dc.language.isospa
dc.page.total33
dc.publication.placeMadrid
dc.publisherFacultad de Ciencias Económicas y Empresariales. Instituto Complutense de Análisis Económico (ICAE)
dc.relation.ispartofseriesDocumentos de Trabajo del Instituto Complutense de Análisis Económico (ICAE)
dc.rightsAtribución-NoComercial-CompartirIgual 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/3.0/es/
dc.subject.keywordPeriodic VARMAX
dc.subject.keywordExact maximum likelihood
dc.subject.keywordKalman filter
dc.subject.keywordSteady-state innovations models
dc.subject.keywordState-space models.
dc.subject.ucmAnálisis matemático
dc.subject.unesco1202 Análisis y Análisis Funcional
dc.titleUn algoritmo rápido para evaluar la función de verosimilitud exacta de modelos VARMAX periódicos
dc.typetechnical report
dc.volume.number1998
dcterms.referencesAdams, G.J. Y Goodwin. G.C. (1995). Parameter Estimation for Periodic ARMA Models. Journal of Time Series Analysis, 16,2, 127-145. Anderson, B.D.O. y Moore, J.B. (1979). Optimal Filtering, Englewood Cliffs. NJ: Prentice Hall. Boshnakov, G.N. (1996). Recursive Computation of the Parameters of Periodic Autoregressive Moving-Average Processes. Journal of Time Series Analysis, 17,4,333-349. Boswijk. P. y Franses, P.H. (1995). Unit roots in Periodic Autorregressions. Journal of Time Series Analysis, 17, 3, 221-245. Casals, J. y Sotoca, S. (1998). Exact Initial Conditions for Maximum Likelihood Estimation of State Space Models with Stochastic Inputs. Economics Letters, forthcoming. De Jong, P. (1988). The Likelihood for a State Space Model. Biometrika 75, 1, 165-169. De Jong, P. y Chu-Chun-Lin, S. (1994). Stationary and Non-Stationary State Space Models. Journal of Time Series Analysis, 15,2, 151-166. Franses, P.H. y Paap, R. (1994). Model Selection in Periodic Autorregressions. Oxford Bulletin of Economics and Statistics, 56, 4, 421-439. Gardner, G., Harvey, A.C y Phillips, G.D.A. (1980). Algorithm 154. An Algorithm for Exact Maximum-Likelihood Estimation of Autoregressive-Moving Average Models by Means of Kalman Filtering. Applied Statistics, 29, 311-317. Hannan, E.J. y Kavalieris, L. (1984). Multivariate Linear Time Series Models. Advances in Applied Probability, 16,492-561. Hannan, E.J. y Rissanen, J. (1982). Recursive Estimation of Mixed Autoregressive-Moving Average Model. Biometrika, 69, 81-94. Lütkepohl, H. (1993). Introduction to Multiple Time Series Analysis. Springer-Verlag, Berlin.(second edition). Li, W.K. y Hui, Y.V. (1988). An Algorithm for the Exact Likelihood of Periodic Autorregressive Moving Average Models. Commun. Statisti.-Simula., 17,4, 1483-1494. Mauricio, A. (1995). Exact Maximum Likelihood Estimation of Stationary Vector ARMA Models. Journal of the American Statistical Association, 90. 429. 282-291. McLeod, A.L. (1975). Derivation of the Theoretical Autocovariance Function of Autorregresive-Moving Average Time Series. Applied Statistics, 24, 255-256. Noakes, D.J., McLeod, A.L. y Hipel, K. (1985). Forecasting Monthly Riverflow Time Series. International Journal of Forecasting, 1, 179-190. Osborn, D.R (1991). The Implications of Periodically Varying Coefficients for Seasonal Time-Series Processes. Journal of Econometrics, 48, 373-384. Pagano, M, (1978), On Periodic and Multiple Autoregression. Annals of Statistics. 6. 1310-1317. Petkov, P.Hr., Christov, N.D. y Konstantinov, M.M. (1991). Computational Methods for Linear Control Systems. Prentice-Hall, Englewood Cliffs, New Jersey. Salas, J.D., Boes, D.C y Smith, R.A. (1982). Estimation of ARMA Models with Seasonal Parameters. Water Resources Research, 18, 1006-1010. Shea, B.L (1989). Algorithm AS 242. The Exact Likelihood of a Vector Autoregressive Moving Average Model. Applied Statistics, 38. 161-204. Terceiro, J. (1990). Estimation of Dynamic Econometric Models with Errors in Variables. Springer-Verlag, Heidelberg. Vecchia, A.V. (1985). Maximum Likelihood Estimation for Periodic Autoregressive Moving Average Models. Technometrics, 27, 4, 375-384.
dspace.entity.typePublication
relation.isAuthorOfPublication138478db-3f49-41e4-a76e-ff6d03e56bb8
relation.isAuthorOfPublicationfdb804b2-ac97-4a0a-bd74-9414c4b86042
relation.isAuthorOfPublication.latestForDiscovery138478db-3f49-41e4-a76e-ff6d03e56bb8

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
9802.pdf
Size:
680.7 KB
Format:
Adobe Portable Document Format