Sugeno-inspired aggregation functions

dc.contributor.authorGonzalez-Garcia, Xabier
dc.contributor.authorHoranská, Ľubomíra
dc.contributor.authorTakáč, Zdenko
dc.contributor.authorRodríguez González, Juan Tinguaro
dc.contributor.authorGómez González, Daniel
dc.contributor.authorBustince, Humberto
dc.date.accessioned2025-10-30T12:35:44Z
dc.date.available2025-10-30T12:35:44Z
dc.date.issued2026
dc.descriptionReceived 14 February 2025, Revised 16 July 2025, Accepted 2 October 2025, Available online 6 October 2025, Version of Record 8 October 2025. Acknowledgement: Xabier Gonzalez-Garcia's, Humberto Bustince's and Zdenko Takáč's research has been supported by the PID2022-136627NB-I00 project funded by MCIN/AEI/10.13039/501100011033/FEDER, UE. Z. Takáč and Ľ. Horanská were supported by the project VEGA 1/0318/25. The research of J. Tinguaro Rodriguez and Daniel Gómez have been supported by the PID2021-122905NB-C21 project. Open access funding provided by Universidad Pública de Navarra.
dc.description.abstractThis paper introduces a novel class of aggregation functions, called Sugeno-inspired aggregation functions, which are conceptually based on the Sugeno integral. The concept of fuzzy measure is rebuilt by incorporating a function designed to evaluate coalitions composed of all elements except one. This approach frames aggregation as a comparison between the value of a given element and the aggregation outcome of the coalition that excludes it. The fundamental properties of this new class of aggregation functions are investigated and their potential applications are explored. The theoretical analysis shows that Sugeno-inspired aggregation functions preserve key features of the original Sugeno integral while eliminating the need to precompute a fuzzy measure, thereby simplifying their use in practical settings. An illustrative example highlight the effectiveness of the proposed aggregation functions in evaluating clustering quality and suggest the potential for novel aggregation approaches to enhance cluster evaluation methodologies.
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Investigación
dc.description.sponsorshipAgencia Estatal de Investigación
dc.description.sponsorshipUniversidad Pública de Navarra
dc.description.statuspub
dc.identifier.citationXabier Gonzalez-Garcia, Ľubomíra Horanská, Zdenko Takáč, J. Tinguaro Rodríguez, Daniel Gómez, Humberto Bustince, Sugeno-inspired aggregation functions, Fuzzy Sets and Systems, Volume 523, 2026, 109616, ISSN 0165-0114, https://doi.org/10.1016/j.fss.2025.109616.
dc.identifier.doi10.1016/j.fss.2025.109616
dc.identifier.issn0165-0114
dc.identifier.officialurlhttps://doi.org/10.1016/j.fss.2025.109616
dc.identifier.urihttps://hdl.handle.net/20.500.14352/125527
dc.journal.titleFuzzy Sets and Systems
dc.language.isoeng
dc.page.initial109616
dc.publisherElsevier
dc.relation.projectIDPID2022-136627NB-I00
dc.relation.projectIDMCIN/AEI/10.13039/501100011033/FEDER
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-122905NB-C21/ES/MODELOS PARA EL PROCESAMIENTO DE INFORMACION COMPLEJA Y APLICACIONES A PROBLEMAS DE REDES/
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalen
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.keywordSugeno integral
dc.subject.keywordFuzzy measure
dc.subject.keywordAggregation function
dc.subject.ucmEstadística
dc.subject.ucmLógica simbólica y matemática (Matemáticas)
dc.subject.ucmFunciones (Matemáticas)
dc.subject.ucmInteligencia artificial (Informática)
dc.subject.unesco1102.08 Lógica Matemática
dc.subject.unesco1209 Estadística
dc.subject.unesco1209 Estadística
dc.titleSugeno-inspired aggregation functions
dc.typejournal article
dc.type.hasVersionVoR
dc.volume.number523
dspace.entity.typePublication
relation.isAuthorOfPublicationddad170a-793c-4bdc-b983-98d313c81b03
relation.isAuthorOfPublication4dcf8c54-8545-4232-8acf-c163330fd0fe
relation.isAuthorOfPublication.latestForDiscoveryddad170a-793c-4bdc-b983-98d313c81b03

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SugenoInspiredAggregationFunctions_FSS_2025.pdf
Size:
1.51 MB
Format:
Adobe Portable Document Format
Description:
Published version

Collections