Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Le rang du systeme linéaire des racines d'une algèbre de Lie rigide résoluble complexe

Loading...
Thumbnail Image

Full text at PDC

Publication date

1992

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis
Citations
Google Scholar

Citation

Abstract

One knows that a solvable rigid Lie algebra is algebraic and can be written as a semidirect product of the form g=T⊕n if n is the maximal nilpotent ideal and T a torus on n . The main result of the paper is equivalent to the following: If g is rigid then T is a maximal torus on n . The authors then study algebras of this form where n is a filiform nilpotent algebra. A classification of this law is given in the case in which the weights of T are kα , with 1≤k≤n=dimn .

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections