Le rang du systeme linéaire des racines d'une algèbre de Lie rigide résoluble complexe
dc.contributor.author | Ancochea Bermúdez, José María | |
dc.contributor.author | Goze, Michel | |
dc.date.accessioned | 2023-06-20T18:43:23Z | |
dc.date.available | 2023-06-20T18:43:23Z | |
dc.date.issued | 1992 | |
dc.description.abstract | One knows that a solvable rigid Lie algebra is algebraic and can be written as a semidirect product of the form g=T⊕n if n is the maximal nilpotent ideal and T a torus on n . The main result of the paper is equivalent to the following: If g is rigid then T is a maximal torus on n . The authors then study algebras of this form where n is a filiform nilpotent algebra. A classification of this law is given in the case in which the weights of T are kα , with 1≤k≤n=dimn . | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/21097 | |
dc.identifier.doi | 10.1080/00927879208824380 | |
dc.identifier.issn | 0092-7872 | |
dc.identifier.officialurl | http://0-www.tandfonline.com.cisne.sim.ucm.es/doi/pdf/10.1080/00927879208824380 | |
dc.identifier.relatedurl | http://www.tandfonline.com | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/58431 | |
dc.issue.number | 3 | |
dc.journal.title | Communications in Algebra | |
dc.language.iso | fra | |
dc.page.final | 887 | |
dc.page.initial | 875 | |
dc.publisher | Taylor & Francis | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512.554.3 | |
dc.subject.keyword | complex solvable rigid Lie algebra | |
dc.subject.keyword | filiform nilradical | |
dc.subject.keyword | adjoint operator | |
dc.subject.ucm | Álgebra | |
dc.subject.unesco | 1201 Álgebra | |
dc.title | Le rang du systeme linéaire des racines d'une algèbre de Lie rigide résoluble complexe | |
dc.type | journal article | |
dc.volume.number | 20 | |
dcterms.references | BRATZLAVSKY F. Sur les algèbres admettent un tore d'autornorphismes donne. J. Algebra 30, 305-316 (19741. CARLES R. Sur la structure des algèbres de Lie rigides. Ann. Inst. Fourier 34, 65-82 (1984). CARLES R. Sur certaines classes d'algèbres de Lie rigides . Math Ann 272; 477-488 (1985) FAVRE G. Système de poids sur une algèbre de Lie nilpotente. Manuscripts Math. 9. 53-90 (19731. GOZE M. ANCOCHEA BERMUDEZ J. M. Algèbres de Lie rigides. Indagationes Math 88. 397-415 (1985). GOZE M. ANCOCHEA BERMUDEZ J.M. Algèbres de Lie rigides dont le nilradical est filiforme. C.R. A.Sc. Paris t. 312 . 21-24 (1991). VERGNE M. Cohomologie des algèbres de Lie nllpotentes. Applications B l'etude de la variété des algèbres de Lie nilpotentes. Bull. Soc. Math. France 98, 81-116 (1970). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 8afd7745-e428-4a77-b1ff-813045b673fd | |
relation.isAuthorOfPublication.latestForDiscovery | 8afd7745-e428-4a77-b1ff-813045b673fd |
Download
Original bundle
1 - 1 of 1