Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Le rang du systeme linéaire des racines d'une algèbre de Lie rigide résoluble complexe

dc.contributor.authorAncochea Bermúdez, José María
dc.contributor.authorGoze, Michel
dc.date.accessioned2023-06-20T18:43:23Z
dc.date.available2023-06-20T18:43:23Z
dc.date.issued1992
dc.description.abstractOne knows that a solvable rigid Lie algebra is algebraic and can be written as a semidirect product of the form g=T⊕n if n is the maximal nilpotent ideal and T a torus on n . The main result of the paper is equivalent to the following: If g is rigid then T is a maximal torus on n . The authors then study algebras of this form where n is a filiform nilpotent algebra. A classification of this law is given in the case in which the weights of T are kα , with 1≤k≤n=dimn .
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/21097
dc.identifier.doi10.1080/00927879208824380
dc.identifier.issn0092-7872
dc.identifier.officialurlhttp://0-www.tandfonline.com.cisne.sim.ucm.es/doi/pdf/10.1080/00927879208824380
dc.identifier.relatedurlhttp://www.tandfonline.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/58431
dc.issue.number3
dc.journal.titleCommunications in Algebra
dc.language.isofra
dc.page.final887
dc.page.initial875
dc.publisherTaylor & Francis
dc.rights.accessRightsrestricted access
dc.subject.cdu512.554.3
dc.subject.keywordcomplex solvable rigid Lie algebra
dc.subject.keywordfiliform nilradical
dc.subject.keywordadjoint operator
dc.subject.ucmÁlgebra
dc.subject.unesco1201 Álgebra
dc.titleLe rang du systeme linéaire des racines d'une algèbre de Lie rigide résoluble complexe
dc.typejournal article
dc.volume.number20
dcterms.referencesBRATZLAVSKY F. Sur les algèbres admettent un tore d'autornorphismes donne. J. Algebra 30, 305-316 (19741. CARLES R. Sur la structure des algèbres de Lie rigides. Ann. Inst. Fourier 34, 65-82 (1984). CARLES R. Sur certaines classes d'algèbres de Lie rigides . Math Ann 272; 477-488 (1985) FAVRE G. Système de poids sur une algèbre de Lie nilpotente. Manuscripts Math. 9. 53-90 (19731. GOZE M. ANCOCHEA BERMUDEZ J. M. Algèbres de Lie rigides. Indagationes Math 88. 397-415 (1985). GOZE M. ANCOCHEA BERMUDEZ J.M. Algèbres de Lie rigides dont le nilradical est filiforme. C.R. A.Sc. Paris t. 312 . 21-24 (1991). VERGNE M. Cohomologie des algèbres de Lie nllpotentes. Applications B l'etude de la variété des algèbres de Lie nilpotentes. Bull. Soc. Math. France 98, 81-116 (1970).
dspace.entity.typePublication
relation.isAuthorOfPublication8afd7745-e428-4a77-b1ff-813045b673fd
relation.isAuthorOfPublication.latestForDiscovery8afd7745-e428-4a77-b1ff-813045b673fd

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ancochea27.pdf
Size:
407.44 KB
Format:
Adobe Portable Document Format

Collections