Isotropy theorem for cosmological vector fields

Thumbnail Image
Full text at PDC
Publication Date
Nuñez Jareño, Santos José
Hallabrin, C.
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
American Physical Society
Google Scholar
Research Projects
Organizational Units
Journal Issue
We consider homogeneous Abelian vector fields in an expanding universe. We find a mechanical analogy in which the system behaves as a particle moving in three dimensions under the action of a central potential. In the case of bounded and rapid evolution compared to the rate of expansion, we show-by making use of the virial theorem-that for an arbitrary potential and polarization pattern, the average energy-momentum tensor is always diagonal and isotropic despite the intrinsic anisotropic evolution of the vector field. For simple power law potentials of the form V = lambda(A(mu)A(mu))(n), the average equation of state is found to be w = (n - 1)/(n + 1). This implies that vector coherent oscillations could act as natural dark matter or dark energy candidates. Finally, we show that under very general conditions, the average energy-momentum tensor of a rapidly evolving bounded vector field in any background geometry is always isotropic and has the perfect fluid form for any locally inertial observer.
© 2012 American Physical Society. This work has been supported by MICINN (Spain) under Project Nos. FIS 2008-01323, FIS2011-23000, FPA2011- 27853 01 and Consolider-Ingenio MULTIDARK under Contract No. CSD2009-00064.
Unesco subjects
[1] T. Damour and V. F. Mukhanov, Phys. Rev. Lett. 80, 3440 (1998); A.R. Liddle and A. Mazumdar, Phys. Rev. D 58, 083508 (1998). [2] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977); Phys. Rev. D 16, 1791 (1977); L. F. Abbott and P. Sikivie, Phys. Lett. 120B, 133 (1983). [3] B. de Carlos, J. A. Casas, F. Quevedo, and E. Roulet, Phys. Lett. B 318, 447 (1993); M. Gasperini and G. Veneziano, Phys. Rev. D 50, 2519 (1994); J.A.R. Cembranos, Phys. Rev. Lett. 102, 141301 (2009); J. Phys. Conf. Ser. 315, 012004 (2011). [4] J. A.R. Cembranos, A.Dobado, and A.L.Maroto, Phys.Rev. D 65, 026005 (2001); Phys. Rev. Lett. 90, 241301 (2003); Phys. Rev. D 68, 103505 (2003); A.L.Maroto, Phys. Rev. D 69, 043509 (2004); Phys. Rev. D 69, 101304 (2004). [5] M. S. Turner, Phys. Rev. D 28, 1243 (1983). [6] A. R. Liddle and R. J. Scherrer, Phys. Rev. D 59, 023509 (1998); S. Dutta and R. J. Scherrer, Phys. Rev. D 78, 083512 (2008). [7] A. Golovnev, V. Mukhanov and V. Vanchurin, J. Cosmol. Astropart. Phys. 06 (2008) 009; T. Koivisto and D. F.Mota, J. Cosmol. Astropart. Phys. 08 (2008) 021; K. Bamba, S.’i. Nojiri, and S. D. Odintsov, Phys. Rev. D 77, 123532 (2008); B. Himmetoglu, C. R. Contaldi, and M. Peloso, Phys. Rev. Lett. 102, 111301 (2009); A.E. Gumrukcuoglu, B. Himmetoglu, and M. Peloso, Phys. Rev. D 81, 063528 (2010). [8] L. H. Ford, Phys. Rev. D 40, 967 (1989). [9] C. Armendariz-Picon, J. Cosmol. Astropart. Phys. 07 (2004) 007; C.G. Boehmer and T. Harko, Eur. Phys. J. C 50, 423 (2007). [10] J. Beltran Jimenez and A. L. Maroto, Phys. Rev. D 78, 063005 (2008); J. Beltran Jimenez and A. L. Maroto, J. Cosmol. Astropart. Phys. 03 (2009) 016; J. Beltran Jimenez and A. L. Maroto, Phys. Lett. B 686, 175 (2010); E. Carlesi, A. Knebe, G. Yepes, S. Gottloeber, J. Beltran Jimenez, and A. L. Maroto, Mon. Not. R. Astron. Soc. 418, 2715 (2011). [11] J. Redondo and M. Postma, J. Cosmol. Astropart. Phys. 02 (2009) 005. [12] K. Dimopoulos, Phys. Rev. D 74, 083502 (2006). [13] A.E. Nelson and J. Scholtz,Phys. Rev. D 84, 103501 (2011). [14] H. K. EriksenF.K. Hansen, A. J. Banday, K.M. Górski, and P. B. Lilje, Astrophys. J. 605, 14 (2004); , , 609, 1198 (E) (2004); G. Hinshaw et al. (WMAP Collaboration), Astrophys. J. Suppl. Ser. 170, 288 (2007); K. Land and J. Magueijo, Phys. Rev. Lett. 95, 071301 (2005); A. Kashlinsky F. Atrio-Barandela, D. Kocevski, and H.Ebeling, Astrophys. J. Lett. 686, L49 (2008); R. Watkins, H. A. Feldman, and M. J. Hudson, Mon. Not. R. Astron. Soc. 392, 743 (2009). [15] J. A. R. Cembranos et al. (work in progress). [16] A. Z. Petrov, Einstein Spaces (Pergamon, Oxford, 1969).