Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Isotropy theorem for cosmological vector fields

dc.contributor.authorLópez Maroto, Antonio
dc.contributor.authorRuiz Cembranos, José Alberto
dc.contributor.authorNuñez Jareño, Santos José
dc.contributor.authorHallabrin, C.
dc.date.accessioned2023-06-20T03:40:55Z
dc.date.available2023-06-20T03:40:55Z
dc.date.issued2012-07-10
dc.description© 2012 American Physical Society. This work has been supported by MICINN (Spain) under Project Nos. FIS 2008-01323, FIS2011-23000, FPA2011- 27853 01 and Consolider-Ingenio MULTIDARK under Contract No. CSD2009-00064.
dc.description.abstractWe consider homogeneous Abelian vector fields in an expanding universe. We find a mechanical analogy in which the system behaves as a particle moving in three dimensions under the action of a central potential. In the case of bounded and rapid evolution compared to the rate of expansion, we show-by making use of the virial theorem-that for an arbitrary potential and polarization pattern, the average energy-momentum tensor is always diagonal and isotropic despite the intrinsic anisotropic evolution of the vector field. For simple power law potentials of the form V = lambda(A(mu)A(mu))(n), the average equation of state is found to be w = (n - 1)/(n + 1). This implies that vector coherent oscillations could act as natural dark matter or dark energy candidates. Finally, we show that under very general conditions, the average energy-momentum tensor of a rapidly evolving bounded vector field in any background geometry is always isotropic and has the perfect fluid form for any locally inertial observer.
dc.description.departmentDepto. de Física Teórica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMICINN (Spain)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25826
dc.identifier.doi10.1103/PhysRevD.86.021301
dc.identifier.issn1550-7998
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevD.86.021301
dc.identifier.relatedurlhttp://journals.aps.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44235
dc.issue.number2
dc.journal.titlePhysical Review D
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.projectIDFIS2008-01323
dc.relation.projectIDFIS2011-23000
dc.relation.projectIDFPA2011- 27853-01
dc.relation.projectIDCSD2009-00064
dc.relation.projectIDConsolider-Ingenio MULTIDARK
dc.rights.accessRightsopen access
dc.subject.cdu53
dc.subject.keywordCp Conservation
dc.subject.keywordInflation
dc.subject.keywordClusters
dc.subject.ucmFísica (Física)
dc.subject.unesco22 Física
dc.titleIsotropy theorem for cosmological vector fields
dc.typejournal article
dc.volume.number86
dcterms.references[1] T. Damour and V. F. Mukhanov, Phys. Rev. Lett. 80, 3440 (1998); A.R. Liddle and A. Mazumdar, Phys. Rev. D 58, 083508 (1998). [2] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977); Phys. Rev. D 16, 1791 (1977); L. F. Abbott and P. Sikivie, Phys. Lett. 120B, 133 (1983). [3] B. de Carlos, J. A. Casas, F. Quevedo, and E. Roulet, Phys. Lett. B 318, 447 (1993); M. Gasperini and G. Veneziano, Phys. Rev. D 50, 2519 (1994); J.A.R. Cembranos, Phys. Rev. Lett. 102, 141301 (2009); J. Phys. Conf. Ser. 315, 012004 (2011). [4] J. A.R. Cembranos, A.Dobado, and A.L.Maroto, Phys.Rev. D 65, 026005 (2001); Phys. Rev. Lett. 90, 241301 (2003); Phys. Rev. D 68, 103505 (2003); A.L.Maroto, Phys. Rev. D 69, 043509 (2004); Phys. Rev. D 69, 101304 (2004). [5] M. S. Turner, Phys. Rev. D 28, 1243 (1983). [6] A. R. Liddle and R. J. Scherrer, Phys. Rev. D 59, 023509 (1998); S. Dutta and R. J. Scherrer, Phys. Rev. D 78, 083512 (2008). [7] A. Golovnev, V. Mukhanov and V. Vanchurin, J. Cosmol. Astropart. Phys. 06 (2008) 009; T. Koivisto and D. F.Mota, J. Cosmol. Astropart. Phys. 08 (2008) 021; K. Bamba, S.’i. Nojiri, and S. D. Odintsov, Phys. Rev. D 77, 123532 (2008); B. Himmetoglu, C. R. Contaldi, and M. Peloso, Phys. Rev. Lett. 102, 111301 (2009); A.E. Gumrukcuoglu, B. Himmetoglu, and M. Peloso, Phys. Rev. D 81, 063528 (2010). [8] L. H. Ford, Phys. Rev. D 40, 967 (1989). [9] C. Armendariz-Picon, J. Cosmol. Astropart. Phys. 07 (2004) 007; C.G. Boehmer and T. Harko, Eur. Phys. J. C 50, 423 (2007). [10] J. Beltran Jimenez and A. L. Maroto, Phys. Rev. D 78, 063005 (2008); J. Beltran Jimenez and A. L. Maroto, J. Cosmol. Astropart. Phys. 03 (2009) 016; J. Beltran Jimenez and A. L. Maroto, Phys. Lett. B 686, 175 (2010); E. Carlesi, A. Knebe, G. Yepes, S. Gottloeber, J. Beltran Jimenez, and A. L. Maroto, Mon. Not. R. Astron. Soc. 418, 2715 (2011). [11] J. Redondo and M. Postma, J. Cosmol. Astropart. Phys. 02 (2009) 005. [12] K. Dimopoulos, Phys. Rev. D 74, 083502 (2006). [13] A.E. Nelson and J. Scholtz,Phys. Rev. D 84, 103501 (2011). [14] H. K. EriksenF.K. Hansen, A. J. Banday, K.M. Górski, and P. B. Lilje, Astrophys. J. 605, 14 (2004); , , 609, 1198 (E) (2004); G. Hinshaw et al. (WMAP Collaboration), Astrophys. J. Suppl. Ser. 170, 288 (2007); K. Land and J. Magueijo, Phys. Rev. Lett. 95, 071301 (2005); A. Kashlinsky F. Atrio-Barandela, D. Kocevski, and H.Ebeling, Astrophys. J. Lett. 686, L49 (2008); R. Watkins, H. A. Feldman, and M. J. Hudson, Mon. Not. R. Astron. Soc. 392, 743 (2009). [15] J. A. R. Cembranos et al. (work in progress). [16] A. Z. Petrov, Einstein Spaces (Pergamon, Oxford, 1969).
dspace.entity.typePublication
relation.isAuthorOfPublicatione14691a1-d3b0-47b7-96d5-24d645534471
relation.isAuthorOfPublicationc5a4cc87-ceba-494d-95ab-d54b9b1a35e3
relation.isAuthorOfPublication.latestForDiscoverye14691a1-d3b0-47b7-96d5-24d645534471

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MarotoAL04libre.pdf
Size:
133.57 KB
Format:
Adobe Portable Document Format

Collections