Isotropy theorem for cosmological vector fields
dc.contributor.author | López Maroto, Antonio | |
dc.contributor.author | Ruiz Cembranos, José Alberto | |
dc.contributor.author | Nuñez Jareño, Santos José | |
dc.contributor.author | Hallabrin, C. | |
dc.date.accessioned | 2023-06-20T03:40:55Z | |
dc.date.available | 2023-06-20T03:40:55Z | |
dc.date.issued | 2012-07-10 | |
dc.description | © 2012 American Physical Society. This work has been supported by MICINN (Spain) under Project Nos. FIS 2008-01323, FIS2011-23000, FPA2011- 27853 01 and Consolider-Ingenio MULTIDARK under Contract No. CSD2009-00064. | |
dc.description.abstract | We consider homogeneous Abelian vector fields in an expanding universe. We find a mechanical analogy in which the system behaves as a particle moving in three dimensions under the action of a central potential. In the case of bounded and rapid evolution compared to the rate of expansion, we show-by making use of the virial theorem-that for an arbitrary potential and polarization pattern, the average energy-momentum tensor is always diagonal and isotropic despite the intrinsic anisotropic evolution of the vector field. For simple power law potentials of the form V = lambda(A(mu)A(mu))(n), the average equation of state is found to be w = (n - 1)/(n + 1). This implies that vector coherent oscillations could act as natural dark matter or dark energy candidates. Finally, we show that under very general conditions, the average energy-momentum tensor of a rapidly evolving bounded vector field in any background geometry is always isotropic and has the perfect fluid form for any locally inertial observer. | |
dc.description.department | Depto. de Física Teórica | |
dc.description.faculty | Fac. de Ciencias Físicas | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | MICINN (Spain) | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/25826 | |
dc.identifier.doi | 10.1103/PhysRevD.86.021301 | |
dc.identifier.issn | 1550-7998 | |
dc.identifier.officialurl | http://dx.doi.org/10.1103/PhysRevD.86.021301 | |
dc.identifier.relatedurl | http://journals.aps.org | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/44235 | |
dc.issue.number | 2 | |
dc.journal.title | Physical Review D | |
dc.language.iso | eng | |
dc.publisher | American Physical Society | |
dc.relation.projectID | FIS2008-01323 | |
dc.relation.projectID | FIS2011-23000 | |
dc.relation.projectID | FPA2011- 27853-01 | |
dc.relation.projectID | CSD2009-00064 | |
dc.relation.projectID | Consolider-Ingenio MULTIDARK | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 53 | |
dc.subject.keyword | Cp Conservation | |
dc.subject.keyword | Inflation | |
dc.subject.keyword | Clusters | |
dc.subject.ucm | Física (Física) | |
dc.subject.unesco | 22 Física | |
dc.title | Isotropy theorem for cosmological vector fields | |
dc.type | journal article | |
dc.volume.number | 86 | |
dcterms.references | [1] T. Damour and V. F. Mukhanov, Phys. Rev. Lett. 80, 3440 (1998); A.R. Liddle and A. Mazumdar, Phys. Rev. D 58, 083508 (1998). [2] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977); Phys. Rev. D 16, 1791 (1977); L. F. Abbott and P. Sikivie, Phys. Lett. 120B, 133 (1983). [3] B. de Carlos, J. A. Casas, F. Quevedo, and E. Roulet, Phys. Lett. B 318, 447 (1993); M. Gasperini and G. Veneziano, Phys. Rev. D 50, 2519 (1994); J.A.R. Cembranos, Phys. Rev. Lett. 102, 141301 (2009); J. Phys. Conf. Ser. 315, 012004 (2011). [4] J. A.R. Cembranos, A.Dobado, and A.L.Maroto, Phys.Rev. D 65, 026005 (2001); Phys. Rev. Lett. 90, 241301 (2003); Phys. Rev. D 68, 103505 (2003); A.L.Maroto, Phys. Rev. D 69, 043509 (2004); Phys. Rev. D 69, 101304 (2004). [5] M. S. Turner, Phys. Rev. D 28, 1243 (1983). [6] A. R. Liddle and R. J. Scherrer, Phys. Rev. D 59, 023509 (1998); S. Dutta and R. J. Scherrer, Phys. Rev. D 78, 083512 (2008). [7] A. Golovnev, V. Mukhanov and V. Vanchurin, J. Cosmol. Astropart. Phys. 06 (2008) 009; T. Koivisto and D. F.Mota, J. Cosmol. Astropart. Phys. 08 (2008) 021; K. Bamba, S.’i. Nojiri, and S. D. Odintsov, Phys. Rev. D 77, 123532 (2008); B. Himmetoglu, C. R. Contaldi, and M. Peloso, Phys. Rev. Lett. 102, 111301 (2009); A.E. Gumrukcuoglu, B. Himmetoglu, and M. Peloso, Phys. Rev. D 81, 063528 (2010). [8] L. H. Ford, Phys. Rev. D 40, 967 (1989). [9] C. Armendariz-Picon, J. Cosmol. Astropart. Phys. 07 (2004) 007; C.G. Boehmer and T. Harko, Eur. Phys. J. C 50, 423 (2007). [10] J. Beltran Jimenez and A. L. Maroto, Phys. Rev. D 78, 063005 (2008); J. Beltran Jimenez and A. L. Maroto, J. Cosmol. Astropart. Phys. 03 (2009) 016; J. Beltran Jimenez and A. L. Maroto, Phys. Lett. B 686, 175 (2010); E. Carlesi, A. Knebe, G. Yepes, S. Gottloeber, J. Beltran Jimenez, and A. L. Maroto, Mon. Not. R. Astron. Soc. 418, 2715 (2011). [11] J. Redondo and M. Postma, J. Cosmol. Astropart. Phys. 02 (2009) 005. [12] K. Dimopoulos, Phys. Rev. D 74, 083502 (2006). [13] A.E. Nelson and J. Scholtz,Phys. Rev. D 84, 103501 (2011). [14] H. K. EriksenF.K. Hansen, A. J. Banday, K.M. Górski, and P. B. Lilje, Astrophys. J. 605, 14 (2004); , , 609, 1198 (E) (2004); G. Hinshaw et al. (WMAP Collaboration), Astrophys. J. Suppl. Ser. 170, 288 (2007); K. Land and J. Magueijo, Phys. Rev. Lett. 95, 071301 (2005); A. Kashlinsky F. Atrio-Barandela, D. Kocevski, and H.Ebeling, Astrophys. J. Lett. 686, L49 (2008); R. Watkins, H. A. Feldman, and M. J. Hudson, Mon. Not. R. Astron. Soc. 392, 743 (2009). [15] J. A. R. Cembranos et al. (work in progress). [16] A. Z. Petrov, Einstein Spaces (Pergamon, Oxford, 1969). | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | e14691a1-d3b0-47b7-96d5-24d645534471 | |
relation.isAuthorOfPublication | c5a4cc87-ceba-494d-95ab-d54b9b1a35e3 | |
relation.isAuthorOfPublication.latestForDiscovery | e14691a1-d3b0-47b7-96d5-24d645534471 |
Download
Original bundle
1 - 1 of 1