Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Compressive strength of masonry made of clay bricks and cement mortar: Estimation based on Neural Networks and Fuzzy Logic

dc.contributor.authorObrer Marco, Creu
dc.contributor.authorGarzón Roca, Julio
dc.contributor.authorAdam, José Miguel
dc.date.accessioned2024-01-24T16:15:49Z
dc.date.available2024-01-24T16:15:49Z
dc.date.issued2013
dc.description.abstractThe use of mathematical tools such as Artificial Neural Networks and Fuzzy Logic has been shown to be useful for solving complex engineering problems, without the need to reproduce the phenomenon under study, when the only information available consists of the parameters of the problem and the desired results. Based on a collection of 96 laboratory tests, this paper uses Artificial Neural Networks and Fuzzy Logic to determine the compressive strength of a masonry structure composed of clay bricks and cement mortar, by using only two parameters: the compressive strength of the mortar and that of the bricks. These mathematical techniques are an alternative to the complex analytical formulas dependent on a large number of parameters and to empirical formulas, which, even though simple, often give unrealistic values. The results obtained are compared to the calculation methods proposed by other authors and other standards and demonstrate the suitability of using Neural Networks and Fuzzy Logic to predict the compressive strength of masonry.eng
dc.description.departmentDepto. de Geodinámica, Estratigrafía y Paleontología
dc.description.facultyFac. de Ciencias Geológicas
dc.description.refereedTRUE
dc.description.statuspub
dc.identifier.citationGarzón-Roca, Julio, et al. «Compressive Strength of Masonry Made of Clay Bricks and Cement Mortar: Estimation Based on Neural Networks and Fuzzy Logic». Engineering Structures, vol. 48, marzo de 2013, pp. 21-27. https://doi.org/10.1016/j.engstruct.2012.09.029.
dc.identifier.doi10.1016/j.engstruct.2012.09.029
dc.identifier.essn1873-7323
dc.identifier.issn0141-0296
dc.identifier.officialurlhttps://doi.org/10.1016/j.engstruct.2012.09.029
dc.identifier.relatedurlhttps://www.sciencedirect.com/science/article/pii/S014102961200507X
dc.identifier.urihttps://hdl.handle.net/20.500.14352/95198
dc.journal.titleEngineering Structures
dc.language.isoeng
dc.page.final27
dc.page.initial21
dc.publisherElsevier
dc.rights.accessRightsopen access
dc.subject.cdu624.012
dc.subject.keywordNeural Networks
dc.subject.keywordFuzzy Logic
dc.subject.keywordMasonry
dc.subject.keywordCompressive strength
dc.subject.ucmCiencias
dc.subject.unesco3305 Tecnología de la Construcción
dc.titleCompressive strength of masonry made of clay bricks and cement mortar: Estimation based on Neural Networks and Fuzzy Logic
dc.typejournal article
dc.type.hasVersionAM
dc.volume.number48
dspace.entity.typePublication
relation.isAuthorOfPublication014f42c3-23e1-4b7c-be9a-53dedeac0559
relation.isAuthorOfPublication.latestForDiscovery014f42c3-23e1-4b7c-be9a-53dedeac0559

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Compressive_strength.docx
Size:
217.81 KB
Format:
Microsoft Word XML

Collections