Generalized Takagi Functions
Loading...
Download
Official URL
Full text at PDC
Publication date
2024
Defense date
23/02/2024
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Complutense de Madrid
Citation
Abstract
La función de Takagi es, probablemente, el ejemplo más sencillo de una función continua no derivable en ningún punto. En notación moderna, la función de Takagi T : [0,1]→R se define comoT (x) =∞Xn=012n φ¡2nx¢(T)siendo φ(x) la distancia del punto x al entero más cercano. Es importante destacar que la definición original dada por T. Takagi en [102] es completamente diferente a la presentada anteriormente. Probablemente, este hecho junto con el aislamiento de Japón a principios del siglo XX, justifican el paso inadvertido de la función de Takagi en el mundo occidental. Como consecuencia, la función de Takagi fue redescubierta a lo largo del siglo XX por numerosos autores como B. van der Waerden [107], R. Tambs-Lyche [104], G. de Rham [94]y T. H. Hildebrandt [68] entre otros...
The Takagi function is probably the simplest example of a continuous nowhere differentiable function. In modern notation, it is defined asT (x) =∞Xn=012n φ¡2nx¢, x ∈ [0,1], (T) where φ(x) is the distance from the point x to the nearest integer. It is important to note that the original definition given by T. Takagi in [102] is entirely different from the one presented above. Probably this, along with Japan’s isolation in the early 20th century, led to the overlooked status of the Takagi function for several decades in the Western World. As a result, the Takagi function was rediscovered throughout the 20th century by numerous authors such as B. L. Van der Waerden [107], R. Tambs-Lyche [104], G. de Rham [94], and T.H. Hildebrandt [68], among others...
The Takagi function is probably the simplest example of a continuous nowhere differentiable function. In modern notation, it is defined asT (x) =∞Xn=012n φ¡2nx¢, x ∈ [0,1], (T) where φ(x) is the distance from the point x to the nearest integer. It is important to note that the original definition given by T. Takagi in [102] is entirely different from the one presented above. Probably this, along with Japan’s isolation in the early 20th century, led to the overlooked status of the Takagi function for several decades in the Western World. As a result, the Takagi function was rediscovered throughout the 20th century by numerous authors such as B. L. Van der Waerden [107], R. Tambs-Lyche [104], G. de Rham [94], and T.H. Hildebrandt [68], among others...
Description
Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas, leída el 23-02-2024