Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

A Spark parallel betweenness centrality computation and its application to community detection problems

Loading...
Thumbnail Image

Full text at PDC

Publication date

2022

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Graz University of Technology
Citations
Google Scholar

Citation

Gomez González, Daniel, et al. “A Spark Parallel Betweenness Centrality Computation and its Application to Community Detection Problems”. JUCS - Journal of Universal Computer Science, vol. 28, núm. 2, febrero de 2022, pp. 160–80. DOI.org (Crossref), https://doi.org/10.3897/jucs.80688

Abstract

The Brandes algorithm has the lowest computational complexity for computing the betweenness centrality measures of all nodes or edges in a given graph. Its numerous applications make it one of the most used algorithms in social network analysis. In this work, we provide a parallel version of the algorithm implemented in Spark. The experimental results show that the parallel algorithm scales as the number of cores increases. Finally, we provide a version of the well-known community detection Girvan-Newman algorithm, based on the Spark version of Brandes algorithm.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections