A Spark parallel betweenness centrality computation and its application to community detection problems
dc.contributor.author | Gómez González, Daniel | |
dc.contributor.author | Llana Díaz, Luis Fernando | |
dc.contributor.author | Pareja Flores, Cristóbal | |
dc.date.accessioned | 2024-12-10T13:38:19Z | |
dc.date.available | 2024-12-10T13:38:19Z | |
dc.date.issued | 2022-02 | |
dc.description.abstract | The Brandes algorithm has the lowest computational complexity for computing the betweenness centrality measures of all nodes or edges in a given graph. Its numerous applications make it one of the most used algorithms in social network analysis. In this work, we provide a parallel version of the algorithm implemented in Spark. The experimental results show that the parallel algorithm scales as the number of cores increases. Finally, we provide a version of the well-known community detection Girvan-Newman algorithm, based on the Spark version of Brandes algorithm. | |
dc.description.department | Depto. de Sistemas Informáticos y Computación | |
dc.description.faculty | Fac. de Estudios Estadísticos | |
dc.description.refereed | TRUE | |
dc.description.sponsorship | Agencia estatal de investigación | |
dc.description.sponsorship | Comunidad de Madrid | |
dc.description.sponsorship | Unión Europea | |
dc.description.status | pub | |
dc.identifier.citation | Gomez González, Daniel, et al. “A Spark Parallel Betweenness Centrality Computation and its Application to Community Detection Problems”. JUCS - Journal of Universal Computer Science, vol. 28, núm. 2, febrero de 2022, pp. 160–80. DOI.org (Crossref), https://doi.org/10.3897/jucs.80688 | |
dc.identifier.doi | 10.3897/jucs.80688 | |
dc.identifier.essn | 0948-6968 | |
dc.identifier.issn | 0948-695X | |
dc.identifier.officialurl | https://doi.org/10.3897/jucs.80688 | |
dc.identifier.relatedurl | https://lib.jucs.org/article/80688/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/112337 | |
dc.issue.number | 2 | |
dc.journal.title | Journal of Universal Computer Science | |
dc.language.iso | eng | |
dc.page.final | 180 | |
dc.page.initial | 160 | |
dc.publisher | Graz University of Technology | |
dc.relation.projectID | RTI2018-093608-B-C3 | |
dc.relation.projectID | S2018/TCS-4314 | |
dc.relation.projectID | S2018/TCS-4314 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | en |
dc.rights.accessRights | open access | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.cdu | 004 | |
dc.subject.keyword | Spark | |
dc.subject.keyword | MapReduce | |
dc.subject.keyword | Social Network Analysis | |
dc.subject.keyword | Centrality measure | |
dc.subject.keyword | Brandes Algorithm | |
dc.subject.keyword | Distributed programming | |
dc.subject.ucm | Informática (Informática) | |
dc.subject.unesco | 1203.17 Informática | |
dc.title | A Spark parallel betweenness centrality computation and its application to community detection problems | |
dc.type | journal article | |
dc.type.hasVersion | VoR | |
dc.volume.number | 28 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 4dcf8c54-8545-4232-8acf-c163330fd0fe | |
relation.isAuthorOfPublication | 680f556a-4f1b-4eda-9add-da2c9b24796a | |
relation.isAuthorOfPublication | 878b6501-e418-44db-83d1-724069085472 | |
relation.isAuthorOfPublication.latestForDiscovery | 4dcf8c54-8545-4232-8acf-c163330fd0fe |
Download
Original bundle
1 - 1 of 1