Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Two-layer Hall effect model for intermediate band Ti-implanted silicon

dc.contributor.authorMartil De La Plaza, Ignacio
dc.contributor.authorGonzález Díaz, Germán
dc.contributor.authorOlea Ariza, Javier
dc.date.accessioned2023-06-20T03:41:00Z
dc.date.available2023-06-20T03:41:00Z
dc.date.issued2011-03-15
dc.description© 2011 American Institute of Physics. The authors would like to acknowledge C. A. I. de Técnicas Físicas of the Universidad Complutense de Madrid for ion implantation experiments. This work was partially supported by the Projects NUMANCIA-2 (S/2009/ ENE-1477) funded by the Comunidad de Madrid and GENESIS-FV (CSD2006-00004) funded by the Spanish Consolider National Program and by the Grants (CCG07-UCM/TIC-2804), and (GR58/08) funded by U.C.M.-C.A.M.-B.S.C.H.
dc.description.abstractSi samples have been implanted with very high Ti doses (over the theoretical Mott limit) to obtain an intermediate band (IB) in the host semiconductor. The electronic transport properties of this material have been analyzed by temperature-dependent sheet resistance and Hall effect measurements in the 7-400 K range. The experimental results are successfully explained by means of an analytical two-layer model, in which the implanted layer and the substrate behave as an IB/n-Si type junction. We deduce that the IB is located at 0.38 eV below the conduction band, which is around one third of the Si bandgap, i.e., theoretically close to the optimum location for an IB. Finally, we obtain that carriers at the IB behave as holes with a mobility of 0.4-0.6 cm(2) V(-1) s(-1). This extremely low mobility is the one expected for a semifilled, metallic band, being this metallic condition of the IB a requirement for IB solar cells.
dc.description.departmentDepto. de Estructura de la Materia, Física Térmica y Electrónica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipSpanish Consolider National Program
dc.description.sponsorshipU.C.M.-C.A.M.-B.S.C.H.
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25845
dc.identifier.doi10.1063/1.3561374
dc.identifier.issn0021-8979
dc.identifier.officialurlhttp://dx.doi.org/10.1063/1.3561374
dc.identifier.relatedurlhttp://scitation.aip.org
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44238
dc.issue.number6
dc.journal.titleJournal of Applied Physics
dc.language.isoeng
dc.publisherAmerican Institute of Physics
dc.relation.projectIDNUMANCIA-II (S2009-ENE-1477)
dc.relation.projectID(GENESIS-FV-CSD2006-00004)
dc.relation.projectID(GENESIS-FV-CCG07-UCM/TIC-2804)
dc.relation.projectID(GR58/08)
dc.rights.accessRightsopen access
dc.subject.cdu537
dc.subject.keywordImpurity Band
dc.subject.keywordEfficiency
dc.subject.keywordMobility
dc.subject.keywordCarriers
dc.subject.keywordCell.
dc.subject.ucmElectricidad
dc.subject.ucmElectrónica (Física)
dc.subject.unesco2202.03 Electricidad
dc.titleTwo-layer Hall effect model for intermediate band Ti-implanted silicon
dc.typejournal article
dc.volume.number109
dcterms.references1) A. Luque and A. Martí, Phys. Rev. Lett. 78, 5014 (1997). 2) A. Luque, A. Martí, E. Antolín, and C. Tablero, Physica B 382, 320 (2006). 3) K. M. Yu, W. Walukiewicz, O. D. Dubon, J. Jasinski, Z. Liliental-Weber, J. Wu, J. W. Beeman, M. R. Pillai, and M. J. Aziz, J. Appl. Phys. 94, 1043 (2003). 4) D. C. Look, J. Appl. Phys. 104, 063718 (2008). 5) D. C. Look, D. C. Reynolds, J. W. Hemsky, J. R. Sizelove, R. L. Jones, and R. J. Molnar, Phys. Rev. Lett. 79, 2273 (1997). 6) A. Martí, D. Fuertes Marrón, and A. Luque, J. Appl. Phys. 103, 073706 (2008). 7) M. Ley, J. Boudaden, and Z. T. Kuznicki, J. Appl. Phys. 98, 044905 (2005). 8) G. González-Díaz, J. Olea, I.Mártil, D. Pastor, A. Martí, E. Antolín, and A Luque, Sol. Energy Mater. Sol. Cells 93, 1668 (2009). 9) J. Olea, G. González Díaz, D. Pastor, and I. Mártil, J. Phys. D: Appl. Phys. 42, 085110 (2009). 10) ATLAS, Device Simulator Framewok distributed by Silvaco Data Systems Inc., 4701, Patrick Henry Drive, Bldg#6, Santa Clara, CA 95054 (2008). 11) K. Sánchez, I. Aguilera, P. Palacios, and P. Wahnón, Phys. Rev. B 79, 165203 (2009). 12) C. W. White, S. R. Wilson, B. R. Appleton, and F. W. Young, Jr., J. Appl. Phys. 51, 738 (1980). 13) C. W. White, J. Narayan, and R. T. Young, Science 204, 461 (1979). 14) D. Mathiot and D. Barbier, J. Appl. Phys. 69, 3878 (1991). 15) J. Olea, M. Toledano-Luque, D. Pastor, G. González-Díaz, and I. Mártil, J. Appl. Phys. 104, 016105 (2008). 16) E. Antolín, A. Martí, J. Olea, D. Pastor, G. González-Díaz, I. Mártil, and A. Luque, Appl. Phys. Lett. 94, 042115 (2009). 17) J. Olea, M. Toledano-Luque, D. Pastor, E. San-Andrés, I. Mártil, and G. González-Díaz, J. Appl. Phys. 107, 103524 (2010). 18) S. Liu, K. Karrai, F. Dunmore, H. D. Drew, R. Wilson, and G. A. Thomas, Phys. Rev. B 48, 11394 (1993). 19) L. Cuadra, A. Martí, and A. Luque, Thin Solid Films 451–452, 593 (2004). 20) R. L. Petritz, Phys. Rev. 110, 1254 (1958). 21) A. Aldea, Phys. Status Solidi (b) 22, 377 (1967). 22) PSPICE, Cadence Design Systems Inc., 2655 Seely Avenue, San Jose, CA 95134 (2000). 23) D.W. Koon, Rev. Sci. Instrum. 77, 094703 (2006).
dspace.entity.typePublication
relation.isAuthorOfPublication6db57595-2258-46f1-9cff-ed8287511c84
relation.isAuthorOfPublicationa5ab602d-705f-4080-b4eb-53772168a203
relation.isAuthorOfPublication12efa09d-69f7-43d4-8a66-75d05b8fe161
relation.isAuthorOfPublication.latestForDiscoverya5ab602d-705f-4080-b4eb-53772168a203

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martil,15libre.pdf
Size:
909.98 KB
Format:
Adobe Portable Document Format

Collections