Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Two-layer Hall effect model for intermediate band Ti-implanted silicon

Loading...
Thumbnail Image

Full text at PDC

Publication date

2011

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

American Institute of Physics
Citations
Google Scholar

Citation

Abstract

Si samples have been implanted with very high Ti doses (over the theoretical Mott limit) to obtain an intermediate band (IB) in the host semiconductor. The electronic transport properties of this material have been analyzed by temperature-dependent sheet resistance and Hall effect measurements in the 7-400 K range. The experimental results are successfully explained by means of an analytical two-layer model, in which the implanted layer and the substrate behave as an IB/n-Si type junction. We deduce that the IB is located at 0.38 eV below the conduction band, which is around one third of the Si bandgap, i.e., theoretically close to the optimum location for an IB. Finally, we obtain that carriers at the IB behave as holes with a mobility of 0.4-0.6 cm(2) V(-1) s(-1). This extremely low mobility is the one expected for a semifilled, metallic band, being this metallic condition of the IB a requirement for IB solar cells.

Research Projects

Organizational Units

Journal Issue

Description

© 2011 American Institute of Physics. The authors would like to acknowledge C. A. I. de Técnicas Físicas of the Universidad Complutense de Madrid for ion implantation experiments. This work was partially supported by the Projects NUMANCIA-2 (S/2009/ ENE-1477) funded by the Comunidad de Madrid and GENESIS-FV (CSD2006-00004) funded by the Spanish Consolider National Program and by the Grants (CCG07-UCM/TIC-2804), and (GR58/08) funded by U.C.M.-C.A.M.-B.S.C.H.

Unesco subjects

Keywords

Collections