Optimized dark matter searches in deep observations of Segue 1 with MAGIC

Research Projects
Organizational Units
Journal Issue
We present the results of stereoscopic observations of the satellite galaxy Segue 1 with the MAGIC Telescopes, carried out between 2011 and 2013. With almost 160 hours of good-quality data, this is the deepest observational campaign on any dwarf galaxy performed so far in the very high energy range of the electromagnetic spectrum. We search this large data sample for signals of dark matter particles in the mass range between 100 GeV and 20 TeV. For this we use the full likelihood analysis method, which provides optimal sensitivity to characteristic gamma-ray spectral features, like those expected from dark matter annihilation or decay. In particular, we focus our search on gamma-rays produced from different final state Standard Model particles, annihilation with internal bremsstrahlung, monochromatic lines and box-shaped signals. Our results represent the most stringent constraints to the annihilation cross-section or decay lifetime obtained from observations of satellite galaxies, for masses above few hundred GeV. In particular, our strongest limit (95% confidence level) corresponds to a similar to 500 GeV dark matter particle annihilating into tau(+)tau(-), and is of order <sigma(ann)v > similar or equal to 1.2x10(-24) cm(3) s(-1) - a factor similar to 40 above the <sigma(ann)v > similar or equal to thermal value.
We would like to thank the Instituto de Astrofísica de Canarias for the excellent working conditions at the Observatorio del Roque de los Muchachos in La Palma. The support of the German BMBF and MPG, the Italian INFN, the Swiss National Fund SNF, and the Spanish MICINN is gratefully acknowledged. This work was also supported by the CPAN CSD2007-00042 and MultiDark CSD2009-00064 projects of the Spanish Consolider-Ingenio 2010 programme, by grant 127740 of the Academy of Finland, by the DFG Cluster of Excellence “Origin and Structure of the Universe”, by the Croatian Science Foundation Project 09/176, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, and by the Polish MNiSzW grant 745/N-HESS-MAGIC/2010/0.
[1] Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE]. [2] P. Hut, Limits on Masses and Number of Neutral Weakly Interacting Particles, Phys. Lett. B 69 (1977) 85 [INSPIRE]. [3] G. Bertone ed., Particle Dark Matter: Observations, Models and Searches, Cambridge University Press, Cambridge, U.K. (2010) [ISBN:978-0521763684]. [4] H.P. Nilles, Supersymmetry, Supergravity and Particle Physics, Phys. Rept. 110 (1984) 1 [INSPIRE]. [5] T. Appelquist, H.C. Cheng and B.A. Dobrescu, Bounds on universal extra dimensions, Phys. Rev. D 64 (2001) 035002 [hep-ph/0012100] [INSPIRE]. [6] M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE]. [7] DAMA collaboration, R. Bernabei et al., First results from DAMA/LIBRA and the combined results with DAMA/NaI, Eur. Phys. J. C 56 (2008) 333 [arXiv:0804.2741] [INSPIRE]. [8] CoGeNT collaboration, C. Aalseth et al., Results from a Search for Light-Mass Dark Matter with a P-type Point Contact Germanium Detector, Phys. Rev. Lett. 106 (2011) 131301 [arXiv:1002.4703] [INSPIRE]. [9] CDMS collaboration, R. Agnese et al., Silicon Detector Dark Matter Results from the Final Exposure of CDMS II, Phys. Rev. Lett. 111 (2013) 251301 [arXiv:1304.4279] [INSPIRE]. [10] SuperCDMSSoudan collaboration, R. Agnese et al., CDMSlite: A Search for Low-Mass WIMPs using Voltage-Assisted Calorimetric Ionization Detection in the SuperCDMS Experiment, Phys. Rev. Lett. (2013) [arXiv:1309.3259] [INSPIRE]. [11] XENON100 collaboration, E. Aprile et al., Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE]. [12] XENON100 collaboration, E. Aprile et al., Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data, Phys. Rev. Lett. 111 (2013) 021301[arXiv:1301.6620] [INSPIRE]. [13] LUX collaboration, D. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, arXiv:1310.8214 [INSPIRE]. [14] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE]. [15] D. Merritt, M. Milosavljevic, L. Verde and R. Jimenez, Dark matter spikes and annihilation radiation from the galactic center, Phys. Rev. Lett. 88 (2002) 191301 [astro-ph/0201376] [INSPIRE]. [16] A. Pinzke, C. Pfrommer and L. Bergstrom, Prospects of detecting gamma-ray emission from galaxy clusters: cosmic rays and dark matter annihilations, Phys. Rev. D 84 (2011) 123509 [arXiv:1105.3240] [INSPIRE]. [17] MAGIC collaboration, J. Albert et al., Upper limit for gamma-ray emission above 140-GeV from the dwarf spheroidal galaxy Draco, Astrophys. J. 679 (2008) 428 [arXiv:0711.2574][INSPIRE]. [18] MAGIC collaboration, E. Aliu et al., Upper limits on the VHE gamma-ray emission from the Willman 1 satellite galaxy with the MAGIC Telescope, Astrophys. J. 697 (2009) 1299 [arXiv:0810.3561] [INSPIRE]. [19] MAGIC collaboration, J. Aleksić et al., Searches for Dark Matter annihilation signatures in the Segue 1 satellite galaxy with the MAGIC-I telescope, JCAP 06 (2011) 035 [arXiv:1103.0477] [INSPIRE]. [20] HESS collaboration, F. Aharonian et al., A search for a dark matter annihilation signal towards the Canis Major overdensity with H.E.S.S, Astrophys. J. 691 (2009) 175[arXiv:0809.3894] [INSPIRE]. [21] HESS collaboration, F. Aharonian et al., Observations of the Sagittarius Dwarf galaxy by the H.E.S.S. experiment and search for a Dark Matter signal, Astropart. Phys. 29 (2008) 55 [Erratum ibid. 33 (2010) 274] [arXiv:0711.2369] [INSPIRE]. [22] HESS collaboration, A. Abramowski et al., H.E.S.S. constraints on Dark Matter annihilations towards the Sculptor and Carina Dwarf Galaxies, Astropart. Phys. 34 (2011) 608 [arXiv:1012.5602] [INSPIRE]. [23] VERITAS collaboration, V. Acciari et al., VERITAS Search for VHE Gamma-ray Emission from Dwarf Spheroidal Galaxies, Astrophys. J. 720 (2010) 1174 [arXiv:1006.5955] [INSPIRE]. [24] VERITAS collaboration, E. Aliu et al., VERITAS Deep Observations of the Dwarf Spheroidal Galaxy Segue 1, Phys. Rev. D 85 (2012) 062001 [arXiv:1202.2144] [INSPIRE]. [25] Fermi-LAT collaboration, M. Ackermann et al., Dark Matter Constraints from Observations of 25 Milky Way Satellite Galaxies with the Fermi Large Area Telescope, arXiv:1310.0828 [INSPIRE]. [26] SDSS collaboration, V. Belokurov et al., Cats and Dogs, Hair and A Hero: A Quintet of New Milky Way Companions, Astrophys. J. 654 (2007) 897 [astro-ph/0608448] [INSPIRE]. [27] J.D. Simon, M. Geha, Q.E. Minor, G.D. Martinez, E.N. Kirby et al., A Complete Spectroscopic Survey of the Milky Way Satellite Segue 1: The Darkest Galaxy, Astrophys. J. 733 (2011) 46 [arXiv:1007.4198] [INSPIRE]. [28] J. Aleksić, J. Rico and M. Martinez, Optimized analysis method for indirect dark matter searches with Imaging Air Cherenkov Telescopes, JCAP 10 (2012) 032 [arXiv:1209.5589] [INSPIRE]. [29] J. Sitarek et al., Physics performance of the upgraded MAGIC telescopes obtained with Crab Nebula data, arXiv:1308.0141 [INSPIRE]. [30] J. Sitarek, M. Gaug, D. Mazin, R. Paoletti and D. Tescaro, Analysis techniques and performance of the Domino Ring Sampler version 4 based readout for the MAGIC telescopes, arXiv:1305.1007 [INSPIRE]. [31] D. Nakajima et al., New Imaging Camera for the MAGIC-I Telescope, in proceedings of 33rd International Cosmic Ray Conference, Rio de Janeiro, Brazil (2013). [32] V. Fomin et al., New methods of atmospheric Cherenkov imaging for gamma-ray astronomy. 1: The False source method, Astropart. Phys. 2 (1994) 137 [INSPIRE]. [33] R. Zanin et al., MARS, the MAGIC Analysis and Reconstruction Software, in proceedings of 33st International Cosmic Ray Conference, Rio de Janeiro, Brasil (2013). [34] MAGIC collaboration, J. Albert et al., Implementation of the Random Forest Method for the Imaging Atmospheric Cherenkov Telescope MAGIC, Nucl. Instrum. Meth. A 588 (2008) 424 [arXiv:0709.3719] [INSPIRE]. [35] T.P. Li and Y.Q. Ma, Analysis methods for results in gamma-ray astronomy, Astrophys. J. 272 (1983) 317 [INSPIRE]. [36] J. Aleksić, Optimized Dark Matter Searches in Deep Observations of Segue 1 with MAGIC, Ph.D. thesis, Universitat Autónoma de Barcelona, Spain (2013). [37] W.A. Rolke, A.M. López and J. Conrad, Limits and confidence intervals in the presence of nuisance parameters, Nucl. Instrum. Meth. A 551 (2005) 493 [physics/0403059] [INSPIRE]. [38] The ROOT Team, TMinuit,, September 2013. [39] J. Cembranos, A. de la Cruz-Dombriz, A. Dobado, R. Lineros and A. Maroto, Photon spectra from WIMP annihilation, Phys. Rev. D 83 (2011) 083507[arXiv:1009.4936] [INSPIRE]. [40] T. Bringmann, X. Huang, A. Ibarra, S. Vogl and C. Weniger, Fermi LAT Search for Internal Bremsstrahlung Signatures from Dark Matter Annihilation, JCAP 07 (2012) 054[arXiv:1203.1312] [INSPIRE]. [41] A. Ibarra, S. López Gehler and M. Pato, Dark matter constraints from box-shaped gamma-ray features, JCAP 07 (2012) 043 [arXiv:1205.0007] [INSPIRE]. [42] J.F. Navarro, A. Ludlow, V. Springel, J. Wang, M. Vogelsberger et al., The Diversity and Similarity of Cold Dark Matter Halos, arXiv:0810.1522 [INSPIRE]. [43] R. Essig, N. Sehgal, L.E. Strigari, M. Geha and J.D. Simon, Indirect Dark Matter Detection Limits from the Ultra-Faint Milky Way Satellite Segue 1, Phys. Rev. D 82 (2010) 123503 [arXiv:1007.4199] [INSPIRE]. [44] L.E. Strigari, S.M. Koushiappas, J.S. Bullock and M. Kaplinghat, Precise constraints on the dark matter content of Milky Way dwarf galaxies for gamma-ray experiments, Phys. Rev. D 75 (2007) 083526 [astro-ph/0611925] [INSPIRE]. [45] J. Hisano, S. Matsumoto and M.M. Nojiri, Explosive dark matter annihilation, Phys. Rev. Lett. 92 (2004) 031303 [hep-ph/0307216] [INSPIRE]. [46] MAGIC collaboration, J. Aleksić et al., Performance of the MAGIC stereo system obtained with Crab Nebula data, Astropart. Phys. 35 (2012) 435 [arXiv:1108.1477] [INSPIRE]. [47] HESS collaboration, A. Abramowski et al., Search for a Dark Matter annihilation signal from the Galactic Center halo with H.E.S.S, Phys. Rev. Lett. 106 (2011) 161301 [arXiv:1103.3266] [INSPIRE]. [48] J.F. Navarro, C.S. Frenk and S.D. White, The Structure of cold dark matter halos, Astrophys. J. 462 (1996) 563 [astro-ph/9508025] [INSPIRE]. [49] F. Prada, A. Klypin, J. Flix Molina, M. Martínez and E. Simonneau, Dark Matter Annihilation in the Milky Way Galaxy: Effects of Baryonic Compression, Phys. Rev. Lett. 93 (2004) 241301 [astro-ph/0401512] [INSPIRE]. [50] PAMELA collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV, Nature 458 (2009) 607 [arXiv:0810.4995] [INSPIRE]. [51] Fermi-LAT collaboration, A.A. Abdo et al., Measurement of the Cosmic Ray e+ plus e-spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope, Phys. Rev. Lett. 102 (2009) 181101 [arXiv:0905.0025] [INSPIRE]. [52] HESS collaboration, F. Aharonian et al., Probing the ATIC peak in the cosmic-ray electron spectrum with H.E.S.S, Astron. Astrophys. 508 (2009) 561 [arXiv:0905.0105] [INSPIRE]. [53] AMS collaboration, M. Aguilar et al., First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5350 GeV, Phys. Rev. Lett. 110 (2013) 141102 [INSPIRE]. [54] D. Hooper, P. Blasi and P.D. Serpico, Pulsars as the Sources of High Energy Cosmic Ray Positrons, JCAP 01 (2009) 025 [arXiv:0810.1527] [INSPIRE]. [55] W. Buchmüller, L. Covi, K. Hamaguchi, A. Ibarra and T. Yanagida, Gravitino Dark Matter in R-Parity Breaking Vacua, JHEP 03 (2007) 037 [hep-ph/0702184] [INSPIRE]. [56] LAT collaboration, M. Ackermann et al., Constraints on the Galactic Halo Dark Matter from Fermi-LAT Diffuse Measurements, Astrophys. J. 761 (2012) 91 [arXiv:1205.6474] [INSPIRE]. [57] M. Cirelli, E. Moulin, P. Panci, P.D. Serpico and A. Viana, Gamma ray constraints on Decaying Dark Matter, Phys. Rev. D 86 (2012) 083506 [arXiv:1205.5283] [INSPIRE]. [58] HESS collaboration, A. Abramowski et al., Search for Dark Matter Annihilation Signals from the Fornax Galaxy Cluster with H.E.S.S, Astrophys. J. 750 (2012) 123 [arXiv:1202.5494] [INSPIRE]. [59] M. Cirelli, P. Panci and P.D. Serpico, Diffuse gamma ray constraints on annihilating or decaying Dark Matter after Fermi, Nucl. Phys. B 840 (2010) 284 [arXiv:0912.0663][INSPIRE]. [60] X. Huang, Q. Yuan, P.-F. Yin, X.J. Bi and X. Chen, Constraints on the dark matter annihilation scenario of Fermi 130 GeV γ-ray line emission by continuous gamma-rays, Milky Way halo, galaxy clusters and dwarf galaxies observations, JCAP 11 (2012) 048 [Erratum ibid.1305 (2013) E02] [arXiv:1208.0267] [INSPIRE]. [61] A. Geringer-Sameth and S.M. Koushiappas, Dark matter line search using a joint analysis of dwarf galaxies with the Fermi Gamma-ray Space Telescope, Phys. Rev. D 86 (2012) 021302 [arXiv:1206.0796] [INSPIRE]. [62] Fermi-LAT collaboration, M. Ackermann et al., Search for Gamma-ray Spectral Lines with the Fermi Large Area Telescope and Dark Matter Implications, Phys. Rev. D 88 (2013) 082002 [arXiv:1305.5597] [INSPIRE]. [63] HESS collaboration, A. Abramowski et al., Search for photon line-like signatures from Dark Matter annihilations with H.E.S.S, Phys. Rev. Lett. 110 (2013) 041301 [arXiv:1301.1173] [INSPIRE]. [64] C. Weniger, A Tentative Gamma-Ray Line from Dark Matter Annihilation at the Fermi Large Area Telescope, JCAP 08 (2012) 007 [arXiv:1204.2797] [INSPIRE]. [65] T. Bringmann and C. Weniger, Gamma Ray Signals from Dark Matter: Concepts, Status and Prospects, Phys. Dark Univ. 1 (2012) 194 [arXiv:1208.5481] [INSPIRE]. [66] Fermi-LAT collaboration, M. Ackermann et al., Fermi LAT Search for Dark Matter in Gamma-ray Lines and the Inclusive Photon Spectrum, Phys. Rev. D 86 (2012) 022002[arXiv:1205.2739] [INSPIRE]. [67] H. Goldberg, Constraint on the Photino Mass from Cosmology, Phys. Rev. Lett. 50 (1983) 1419 [Erratum ibid. 103 (2009) 099905] [INSPIRE].