Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On a Conjecture of Barry Simon on Trace Ideals

Loading...
Thumbnail Image

Full text at PDC

Publication date

1989

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

DUKE UNIV PRESS
Citations
Google Scholar

Citation

Abstract

Let H denote a Hilbert space, T a compact operator on H, {sn(T)}1 n=1 the eigenvalues of |T|, and Sp (p > 0) the set of all such T for which {sn(T)}1 n=1 is in `p. If A and B are bounded linear operators on L2, say that B pointwise dominates A if |A(x)(t)| B(|x|)(t) a.e. for all x(t) in L2. It is known that if p = 2n for some positive integer n, B is in Sp, and B pointwise dominates A, then A is also in Sp. Simon has conjectured that this result fails for p < 2, and has given a counterexample for 0 < p 1. The authors provide a counterexample for the remaining cases where 1 < p < 2.

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections