On a Conjecture of Barry Simon on Trace Ideals
Loading...
Official URL
Full text at PDC
Publication date
1989
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
DUKE UNIV PRESS
Citation
Abstract
Let H denote a Hilbert space, T a compact operator on H, {sn(T)}1 n=1 the eigenvalues of |T|, and Sp (p > 0) the set of all such T for which {sn(T)}1 n=1 is in `p. If A and B are bounded linear operators on L2, say that B pointwise dominates A if |A(x)(t)| B(|x|)(t) a.e. for all x(t) in L2. It is known that if p = 2n for some positive integer n, B is in Sp, and B pointwise dominates A, then A is also in Sp. Simon has conjectured that this result fails for p < 2, and has given a counterexample for 0 < p 1. The authors provide a counterexample for the remaining cases where 1 < p < 2.