Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

On a Conjecture of Barry Simon on Trace Ideals

dc.contributor.authorCobos Díaz, Fernando
dc.contributor.authorKühn, Thomas
dc.date.accessioned2023-06-20T16:53:41Z
dc.date.available2023-06-20T16:53:41Z
dc.date.issued1989
dc.description.abstractLet H denote a Hilbert space, T a compact operator on H, {sn(T)}1 n=1 the eigenvalues of |T|, and Sp (p > 0) the set of all such T for which {sn(T)}1 n=1 is in `p. If A and B are bounded linear operators on L2, say that B pointwise dominates A if |A(x)(t)| B(|x|)(t) a.e. for all x(t) in L2. It is known that if p = 2n for some positive integer n, B is in Sp, and B pointwise dominates A, then A is also in Sp. Simon has conjectured that this result fails for p < 2, and has given a counterexample for 0 < p 1. The authors provide a counterexample for the remaining cases where 1 < p < 2.en
dc.description.departmentDepto. de Análisis Matemático y Matemática Aplicada
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/15609
dc.identifier.doi10.1215/S0012-7094-89-05911-5
dc.identifier.issn0012-7094
dc.identifier.officialurlhttps//doi.org/10.1215/S0012-7094-89-05911-5
dc.identifier.relatedurlhttp://projecteuclid.org/euclid.dmj/1077307842
dc.identifier.urihttps://hdl.handle.net/20.500.14352/57355
dc.issue.number1
dc.journal.titleDuke mathematical journal
dc.page.final299
dc.page.initial295
dc.publisherDUKE UNIV PRESS
dc.rights.accessRightsmetadata only access
dc.subject.cdu517.98
dc.subject.keywordTrace ideals
dc.subject.keywordCompact operator
dc.subject.keywordPointwise dominates
dc.subject.ucmAnálisis funcional y teoría de operadores
dc.titleOn a Conjecture of Barry Simon on Trace Idealsen
dc.typejournal article
dc.volume.number59
dspace.entity.typePublication
relation.isAuthorOfPublicationad35279f-f928-4b72-a5bd-e422662ac4c1
relation.isAuthorOfPublication.latestForDiscoveryad35279f-f928-4b72-a5bd-e422662ac4c1

Download

Collections