How rotating ATP synthases can modulate membrane structure

dc.contributor.authorAlmendro Vedia, Víctor Galileo
dc.contributor.authorNatale, Paolo
dc.contributor.authorValdivieso González, David
dc.contributor.authorLillo, M. Pilar
dc.contributor.authorAragones, Juan L.
dc.contributor.authorLópez-Montero, Iván
dc.date.accessioned2023-06-16T14:19:21Z
dc.date.available2023-06-16T14:19:21Z
dc.date.issued2021-09-15
dc.descriptionCRUE-CSIC (Acuerdos Transformativos 2021)
dc.description.abstractF1Fo-ATP synthase (ATP synthase) is a central membrane protein that synthetizes most of the ATP in the cell through a rotational movement driven by a proton gradient across the hosting membrane. In mitochondria, ATP synthases can form dimers through specific interactions between some subunits of the protein. The dimeric form of ATP synthase provides the protein with a spontaneous curvature that sustain their arrangement at the rim of the high-curvature edges of mitochondrial membrane (cristae). Also, a direct interaction with cardiolipin, a lipid present in the inner mitochondrial membrane, induces the dimerization of ATP synthase molecules along cristae. The deletion of those biochemical interactions abolishes the protein dimerization producing an altered mitochondrial function and morphology. Mechanically, membrane bending is one of the key deformation modes by which mitochondrial membranes can be shaped. In particular, bending rigidity and spontaneous curvature are important physical factors for membrane remodelling. Here, we discuss a complementary mechanism whereby the rotatory movement of the ATP synthase might modify the mechanical properties of lipid bilayers and contribute to the formation and regulation of the membrane invaginations.
dc.description.departmentDepto. de Química Física
dc.description.facultyFac. de Ciencias Químicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipComunidad de Madrid
dc.description.sponsorshipFundación La Caixa
dc.description.sponsorshipComunidad de Madrid
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/70117
dc.identifier.doi10.1016/j.abb.2021.108939
dc.identifier.issn0003-9861
dc.identifier.officialurlhttps://doi.org/10.1016/j.abb.2021.108939
dc.identifier.urihttps://hdl.handle.net/20.500.14352/4675
dc.journal.titleArchives of Biochemistry and Biophysics
dc.language.isoeng
dc.page.initial108939
dc.publisherElsevier
dc.relation.projectIDPGC2018-097903-B-I00; RTI2018-101953-A-100
dc.relation.projectIDSINOXPHOS-CM (S2018/BAA-4403)
dc.relation.projectID(ID 100010434)
dc.relation.projectID(CT103/19/PEJ‐2019‐AI/IND‐13687).
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España
dc.rights.accessRightsopen access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.cdu544
dc.subject.keywordF1Fo ATP synthase
dc.subject.keywordMembrane mechanics
dc.subject.keywordMitochondria
dc.subject.keywordCristae
dc.subject.keywordRotation
dc.subject.ucmQuímica
dc.subject.ucmQuímica física (Química)
dc.subject.unesco23 Química
dc.titleHow rotating ATP synthases can modulate membrane structure
dc.typejournal article
dc.volume.number708
dspace.entity.typePublication
relation.isAuthorOfPublicationcac874a1-a328-4d98-a6a4-7a594f6573c7
relation.isAuthorOfPublication04e36158-d33c-41b2-b16c-efafa44a8bca
relation.isAuthorOfPublication.latestForDiscovery04e36158-d33c-41b2-b16c-efafa44a8bca

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0003986121001880-main.pdf
Size:
5.75 MB
Format:
Adobe Portable Document Format

Collections