Integrabilidad, caos y entrelazamiento en sistemas cuánticos: entrelazamiento cuántico en cadenas de espines XX inhomogéneas
Loading...
Official URL
Full text at PDC
Publication date
2024
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citation
Abstract
El presente trabajo pretende explorar el concepto de la entropía de entrelazamiento cuántico del estado fundamental de los sistemas bipartitos en términos de la entropía de Rényi, con especial énfasis en las cadenas de espines inhomogéneas por sus propiedades especiales e interés teórico. Relacionaremos las familias ortogonales de polinomios y resultados clásicos de esta área con métodos de diagonalización de hamiltonianos de cadenas cuando éstos se restringen al subespacio de una partícula. Dada la inviabilidad computacional y el escalamiento exponencial de la complejidad de los cálculos con el tamaño del sistema, recurriremos a técnicas propias de teorías cuánticas conformes en (1 + 1) dimensiones, las cuales proporcionarán fórmulas asintóticas para la entropía de entrelazamiento del vacío de un cierto hamiltoniano. Se realizarán simulaciones numéricas con Mathematica a fin de comparar y extraer cuán buenas resultan ser estas expresiones en el límite continuo de nuestros modelos discretos; todo esto tiene como objetivo obtener propiedades acerca del comportamiento crítico de nuestros sistemas, que viene regido por la dependencia de la entropía de entrelazamiento con N, el número de sitios de la cadena. El estudio se centrará en dos familias específicas de cadenas: la cadena de Lamé y la cadena de Rindler, donde haremos una comparativa entre las similitudes y diferencias de ambas, pudiendo así extraer de ellas propiedades universales de los modelos de cadenas inhomogéneas.
The present work aims to explore the concept of quantum entanglement entropy of the ground state of bipartite systems in terms of Rényi entropy, with a special emphasis on inhomogeneous spin chains due to their special properties and theoretical interest. We will relate orthogonal families of polynomials and classical results in this area to methods of diagonalizing Hamiltonians of chains when restricted to the subspace of a single particle. Given the computational infeasibility and exponential scaling of complexity in calculations with system size, we will resort to techniques from conformal quantum field theories in (1 + 1) dimensions, which will provide asymptotic formulas for the entanglement entropy of the vacuum of a certain Hamiltonian. Numerical simulations will be conducted using Mathematica to compare and assess how accurate these expressions are in the continuous limit of our discrete models; the objective of all this is to derive properties concerning the critical behavior of our systems, governed by the dependence of entanglement entropy on N, the number of sites in the chain. The study will focus on two specific families of chains: the Lamé chain and the Rindler chain, where we will compare the similarities and differences between them, thus being able to extract universal properties of inhomogeneous chain models.
The present work aims to explore the concept of quantum entanglement entropy of the ground state of bipartite systems in terms of Rényi entropy, with a special emphasis on inhomogeneous spin chains due to their special properties and theoretical interest. We will relate orthogonal families of polynomials and classical results in this area to methods of diagonalizing Hamiltonians of chains when restricted to the subspace of a single particle. Given the computational infeasibility and exponential scaling of complexity in calculations with system size, we will resort to techniques from conformal quantum field theories in (1 + 1) dimensions, which will provide asymptotic formulas for the entanglement entropy of the vacuum of a certain Hamiltonian. Numerical simulations will be conducted using Mathematica to compare and assess how accurate these expressions are in the continuous limit of our discrete models; the objective of all this is to derive properties concerning the critical behavior of our systems, governed by the dependence of entanglement entropy on N, the number of sites in the chain. The study will focus on two specific families of chains: the Lamé chain and the Rindler chain, where we will compare the similarities and differences between them, thus being able to extract universal properties of inhomogeneous chain models.