A stable/unstable manifold theorem for local homeomorphisms of the plane
dc.contributor.author | Romero Ruiz del Portal, Francisco | |
dc.contributor.author | Salazar, J. M. | |
dc.date.accessioned | 2023-06-20T09:30:44Z | |
dc.date.available | 2023-06-20T09:30:44Z | |
dc.date.issued | 2005 | |
dc.description.abstract | We use a notion (introduced in Topology 41 (2002), 1119–1212), which is stronger than the concept of filtration pair, to prove a stable/unstable manifold general theorem for local homeomorphisms of the plane in a neighborhood of an isolated fixed. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/13986 | |
dc.identifier.doi | 10.1017/S0143385704000367 | |
dc.identifier.issn | 1469-4417 | |
dc.identifier.officialurl | http://journals.cambridge.org/action/displayJournal?jid=ETSbVolume=y | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/49772 | |
dc.issue.number | 1 | |
dc.journal.title | Ergodic Theory and Dynamical Systems | |
dc.language.iso | eng | |
dc.page.final | 317 | |
dc.page.initial | 301 | |
dc.publisher | Cambridge | |
dc.rights.accessRights | open access | |
dc.subject.cdu | 515.1 | |
dc.subject.keyword | Fixed-point index theory | |
dc.subject.keyword | Filtration pair | |
dc.subject.keyword | Isolated fixed-point | |
dc.subject.keyword | Isolating neighborhood isolating block | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1210 Topología | |
dc.title | A stable/unstable manifold theorem for local homeomorphisms of the plane | |
dc.type | journal article | |
dc.volume.number | 25 | |
dcterms.references | [1] S. Baldwin and E. E. Slaminka. A stable/unstable ‘manifold’ theorem for area preserving homeomorphisms of two dimensions. Proc. Amer. Math. Soc. 109(3) (1990), 823–828. [2] M. Bonino. Lefschetz index for orientation reversing planar homeomorphisms. Proc. Amer. Math. Soc. 130(7) (2002), 2173–2177. [3] K. Borsuk. Theory of Shape (Monografie Matematyczne, 59). PWN, Warsaw, 1975. [4] K. Borsuk. Theory of Retracts (Monografie Matematyczne, 44). PWN, Warsaw, 1967. [5] L. E. Brouwer. Beweis des ebenen translationssatzes. Math. Ann. 72 (1912), 37–54. [6] M. Brown. On the fixed point index of iterates of planar homeomorphisms. Proc. Amer. Math. Soc. 108 (1990), 1109–1114. [7] M. Brown. A new proof of Brouwer’s lemma on translation arcs. Houston J. Math. 10 (1984), 35–41. [8] R. F. Brown. The Lefschetz Fixed Point Theorem. Scott Foreman, Glenview, IL and London, 1971. [9] P. Le Calvez. Une propriété dynamique des homéomorphismes du plan au voisinage d’un point fixe d’indice >1. Topology 38(1) (1999), 23–35. [10] P. Le Calvez and J. C. Yoccoz. Un théoréme d’indice pour les homéomorphismes du plan au voisinage d’un point fixe. Ann. Math. 146 (1997), 241–293. [11] C. O. Christenson and W. L. Voxman. Aspects of Topology. BCS Associates, Moscow, ID, 1998. [12] E. N. Dancer and R. Ortega. The index or Lyapunov stable fixed points. J. Dynam. Differential Equations 6 (1994), 631–637. [13] A. Dold. Fixed point index and fixed point theorem for Euclidean neighborhood retracts. Topology 4 (1965), 1–8. [14] J. Franks. The Conley index and non-existence of minimal homeomorphisms. Illinois J. Math. 43(3) (1999), 457–464. [15] J. Franks and D. Richeson. Shift equivalence and the Conley index. Trans. Amer. Math. Soc. 352(7) (2000), 3305–3322. [16] M. Handel. There are no minimal homeomorphisms of the multipunctured plane. Ergod. Th. & Dynam. Sys. 12 (1992), 75–83. [17] M.W. Hirsch. Fixed-point indices, homoclinic contacts, and dynamics of injective planar maps. Michigan Math. J. 47 (2000), 101–108. [18] B. Kerékjártó. Voresungen über Topologie (I). Springer, Berlin, 1923. [19] R. D. Nussbaum. The Fixed Point Index and some Applications. Séminaire de Mathématiques supérieures, Les Presses de L’Université de Montréal, 1985. [20] S. Pelikan and E. E. Slaminka. A bound for the fixed point index of area-preserving homeomorphisms of two-manifolds. Ergod. Th. & Dynam. Sys. 7 (1987), 463–479. [21] F. R. Ruiz del Portal and J. M. Salazar. Fixed point index of iterations of local homeomorphisms of the plane: a Conley-index approach. Topology 41 (2002), 1199–1212. [22] M. Shub and D. Sullivan. A remark on the Lefschetz fixed point formula for differentiable maps. Topology 13 (1974), 189–191. [23] C. P. Simon. A bound for the fixed point index of an area-preserving map with applications to mechanics. Invent. Math. 26 (1974), 187–200. | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1