Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

3-variétes qui ne sont pas des revêtements cycliques ramifiés sur S3

Loading...
Thumbnail Image

Full text at PDC

Publication date

1975

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

American Mathematical Society
Citations
Google Scholar

Citation

Abstract

Let M denote a p-fold, branched, cyclic, covering space of S3, and suppose that the three-dimensional Smith conjecture is true for p-periodic autohomeomorphisms of S3. J. S. Birman and H. M. Hilden have constructed an algorithm for deciding whether M is homeomorphic to S3 [Bull. Amer. Math. Soc. 79 (1973), 1006–1010]. Now every closed, orientable three-manifold is a three-fold covering space of S3 branched over a knot [Hilden, ibid. 80 (1974), 1243–1244], but, in the present paper, the author shows that, if Fg is a closed, orientable surface of genus g≥1, then Fg×S1 is not a p-fold, branched cyclic covering space of S3 for any p. As the author points out, this was previously known for p=2 [R. H. Fox, Mat. Hisp.-Amer. (4) 32 (1972), 158–166; the author, Bol. Soc. Mat. Mexicana (2) 18 (1973), 1–32].

Research Projects

Organizational Units

Journal Issue

Description

UCM subjects

Unesco subjects

Keywords

Collections