Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

3-variétes qui ne sont pas des revêtements cycliques ramifiés sur S3

dc.contributor.authorMontesinos Amilibia, José María
dc.date.accessioned2023-06-21T02:03:05Z
dc.date.available2023-06-21T02:03:05Z
dc.date.issued1975
dc.description.abstractLet M denote a p-fold, branched, cyclic, covering space of S3, and suppose that the three-dimensional Smith conjecture is true for p-periodic autohomeomorphisms of S3. J. S. Birman and H. M. Hilden have constructed an algorithm for deciding whether M is homeomorphic to S3 [Bull. Amer. Math. Soc. 79 (1973), 1006–1010]. Now every closed, orientable three-manifold is a three-fold covering space of S3 branched over a knot [Hilden, ibid. 80 (1974), 1243–1244], but, in the present paper, the author shows that, if Fg is a closed, orientable surface of genus g≥1, then Fg×S1 is not a p-fold, branched cyclic covering space of S3 for any p. As the author points out, this was previously known for p=2 [R. H. Fox, Mat. Hisp.-Amer. (4) 32 (1972), 158–166; the author, Bol. Soc. Mat. Mexicana (2) 18 (1973), 1–32].
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/17298
dc.identifier.doi10.1090/S0002-9939-1975-0353293-9
dc.identifier.issn0002-9939
dc.identifier.officialurlhttp://www.ams.org/journals/proc/1975-047-02/S0002-9939-1975-0353293-9/S0002-9939-1975-0353293-9.pdf
dc.identifier.relatedurlhttp://www.ams.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64718
dc.journal.titleProceedings of the American Mathematical Society
dc.language.isofra
dc.page.final500
dc.page.initial495
dc.publisherAmerican Mathematical Society
dc.rights.accessRightsrestricted access
dc.subject.cdu515.162.8
dc.subject.keywordCyclic branched covering spaces
dc.subject.keywordthree manifolds
dc.subject.keywordthree-sphere
dc.subject.keywordtwo manifolds
dc.subject.ucmTopología
dc.subject.unesco1210 Topología
dc.title3-variétes qui ne sont pas des revêtements cycliques ramifiés sur S3
dc.typejournal article
dc.volume.number47
dcterms.referencesJ. S. Birman and H. M. Hilden, The homeomorphism problem for S3, Bull. Amer. Math. Soc. 79 (1973), 1006-1010. R. H. Fox, A note on branched cyclic coverings of spheres, Rev. Mat. Hisp.-Amer. 32 (1972), 158-166. J. M. Montesinos, Una familia infinita de nudos representados no separables, Rev. Mat. Hisp.-Amer. 33 (1973), 32-35. J. M. Montesinos, Variedades de Seifert que son recubridores cíclicos ramificados de dos hojas, Bol. Soc. Mat. Mexicana 18 (1973), 1-32. M. Newman, Integral matrices, Academic Press, New York, 1972. E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. B. L. van der Waerden, Modern algebra, Vol. I, Springer, Berlin, 1930-1931; English transl., Ungar, New York, 1949. F. Waldhausen, Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. I, II, Invent. Math. 3 (1967), 308-333; ibid. 4 (1967), 87-117.
dspace.entity.typePublication
relation.isAuthorOfPublication7097502e-a5b0-4b03-b547-bc67cda16ae2
relation.isAuthorOfPublication.latestForDiscovery7097502e-a5b0-4b03-b547-bc67cda16ae2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montesinos30.pdf
Size:
360.44 KB
Format:
Adobe Portable Document Format

Collections