3-variétes qui ne sont pas des revêtements cycliques ramifiés sur S3
dc.contributor.author | Montesinos Amilibia, José María | |
dc.date.accessioned | 2023-06-21T02:03:05Z | |
dc.date.available | 2023-06-21T02:03:05Z | |
dc.date.issued | 1975 | |
dc.description.abstract | Let M denote a p-fold, branched, cyclic, covering space of S3, and suppose that the three-dimensional Smith conjecture is true for p-periodic autohomeomorphisms of S3. J. S. Birman and H. M. Hilden have constructed an algorithm for deciding whether M is homeomorphic to S3 [Bull. Amer. Math. Soc. 79 (1973), 1006–1010]. Now every closed, orientable three-manifold is a three-fold covering space of S3 branched over a knot [Hilden, ibid. 80 (1974), 1243–1244], but, in the present paper, the author shows that, if Fg is a closed, orientable surface of genus g≥1, then Fg×S1 is not a p-fold, branched cyclic covering space of S3 for any p. As the author points out, this was previously known for p=2 [R. H. Fox, Mat. Hisp.-Amer. (4) 32 (1972), 158–166; the author, Bol. Soc. Mat. Mexicana (2) 18 (1973), 1–32]. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/17298 | |
dc.identifier.doi | 10.1090/S0002-9939-1975-0353293-9 | |
dc.identifier.issn | 0002-9939 | |
dc.identifier.officialurl | http://www.ams.org/journals/proc/1975-047-02/S0002-9939-1975-0353293-9/S0002-9939-1975-0353293-9.pdf | |
dc.identifier.relatedurl | http://www.ams.org/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/64718 | |
dc.journal.title | Proceedings of the American Mathematical Society | |
dc.language.iso | fra | |
dc.page.final | 500 | |
dc.page.initial | 495 | |
dc.publisher | American Mathematical Society | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 515.162.8 | |
dc.subject.keyword | Cyclic branched covering spaces | |
dc.subject.keyword | three manifolds | |
dc.subject.keyword | three-sphere | |
dc.subject.keyword | two manifolds | |
dc.subject.ucm | Topología | |
dc.subject.unesco | 1210 Topología | |
dc.title | 3-variétes qui ne sont pas des revêtements cycliques ramifiés sur S3 | |
dc.type | journal article | |
dc.volume.number | 47 | |
dcterms.references | J. S. Birman and H. M. Hilden, The homeomorphism problem for S3, Bull. Amer. Math. Soc. 79 (1973), 1006-1010. R. H. Fox, A note on branched cyclic coverings of spheres, Rev. Mat. Hisp.-Amer. 32 (1972), 158-166. J. M. Montesinos, Una familia infinita de nudos representados no separables, Rev. Mat. Hisp.-Amer. 33 (1973), 32-35. J. M. Montesinos, Variedades de Seifert que son recubridores cíclicos ramificados de dos hojas, Bol. Soc. Mat. Mexicana 18 (1973), 1-32. M. Newman, Integral matrices, Academic Press, New York, 1972. E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. B. L. van der Waerden, Modern algebra, Vol. I, Springer, Berlin, 1930-1931; English transl., Ungar, New York, 1949. F. Waldhausen, Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. I, II, Invent. Math. 3 (1967), 308-333; ibid. 4 (1967), 87-117. | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 7097502e-a5b0-4b03-b547-bc67cda16ae2 | |
relation.isAuthorOfPublication.latestForDiscovery | 7097502e-a5b0-4b03-b547-bc67cda16ae2 |
Download
Original bundle
1 - 1 of 1