Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Nonclassicality of states and measurements by breaking classical bounds on statistics

dc.contributor.authorRivas, Ángel
dc.contributor.authorLuis Aina, Alfredo
dc.date.accessioned2023-06-20T03:54:25Z
dc.date.available2023-06-20T03:54:25Z
dc.date.issued2009-04-24
dc.description©2009 The American Physical Society. We thank Dr. Shashank Virmani for fruitful discussions and Professor Mark Hillery for valuable comments. A.R. acknowledges financial support from the University of Hertfordshire and the EU Integrated Project QAP. A.L. acknowledges support from Project No. FIS2008-01267 of the Spanish Dirección General de Investigación del Ministerio de Ciencia e Innovación.
dc.description.abstractWe derive exceedingly simple practical procedures revealing the quantum nature of states and measurements by the violation of classical upper bounds on the statistics of arbitrary measurements. Data analysis is minimum, and definite conclusions are obtained without evaluation of moments or any other more sophisticated procedures. These nonclassical tests are independent of other typical quantum signatures such as sub-Poissonian statistics, quadrature squeezing, or oscillatory statistics. This approach can be equally well applied to very diverse situations such as single- and two-mode fields, observables with continuous and discrete spectra, finite- and infinite-dimensional systems, and ideal and noisy measurements.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipUniversity of Hertfordshire
dc.description.sponsorshipUnión Europea (UE)
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/30940
dc.identifier.doi10.1103/PhysRevA.79.042105
dc.identifier.issn1050-2947
dc.identifier.officialurlhttp://dx.doi.org/10.1103/PhysRevA.79.042105
dc.identifier.relatedurlhttp://journals.aps.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44649
dc.issue.number4
dc.journal.titlePhysical review A
dc.language.isoeng
dc.page.final042105_12
dc.page.initial042105_1
dc.publisherAmerican Physical Society
dc.relation.projectIDFIS2008-01267
dc.relation.projectIDEU Integrated Project QAP
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordSchrodinger cat states
dc.subject.keywordCoherent states
dc.subject.keywordQuantum optics
dc.subject.keywordSuperposition
dc.subject.keywordDecoherence
dc.subject.keywordTomography
dc.subject.keywordCavity
dc.subject.keywordField
dc.subject.keywordDetectors
dc.subject.keywordCriterion
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titleNonclassicality of states and measurements by breaking classical bounds on statistics
dc.typejournal article
dc.volume.number79
dcterms.references[1] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, England, 1995); M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, England, 1997); V. V. Dodonov, J. Opt. B: Quantum Semiclassical Opt. 4, R1 (2002); U. M. Titulaer and R. J. Glauber, Phys. Rev. 140, B676 (1965); L. Mandel, Phys. Scr. T12, 34 (1986); D.-G. Welsch, W. Vogel, and T. Opatrný, in Progress in Optics, edited by E. Wolf (Elsevier, Amsterdam, 1999), Vol. 39; T. Richter and W. Vogel, Phys. Rev. Lett. 89, 283601 (2002); E. V. Shchukin and W. Vogel, Phys. Rev. A 72, 043808 (2005); R. Alicki and N. Van Ryn, J. Phys. A 41, 062001 (2008). [2] M. Hillery, Phys. Rev. A 35, 725 (1987). [3] H. J. Kimble, M. Dagenais, and L. Mandel, Phys. Rev. Lett. 39, 691 (1977); R. Short and L. Mandel, ibid. 51, 384 (1983); R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, ibid. 55, 2409 (1985). [4] D. N. Klyshko, Phys. Lett. A 213, 7 (1996); C. T. Lee, Phys. Rev. A 55, 4449 (1997). [5] G. S. Agarwal and K. Tara, Phys. Rev. A 46, 485 (1992); A. Zavatta, V. Parigi, and M. Bellini, ibid. 75, 052106 (2007); T. Kiesel, W. Vogel, V. Parigi, A. Zavatta, and M. Bellini, ibid. 78, 021804(R) (2008). [6] W. Vogel, Phys. Rev. Lett. 84, 1849 (2000); T. Richter and W. Vogel, ibid. 89, 283601 (2002); E. Shchukin, T. Richter, and W. Vogel, Phys. Rev. A 71, 011802(R) (2005); A. I. Lvovsky and J. H. Shapiro, ibid. 65, 033830 (2002). [7] R. W. Spekkens, Phys. Rev. Lett. 101, 020401 (2008). [8] A. Luis and L. L. Sánchez-Soto, Phys. Rev. Lett. 83, 3573 (1999); J. Fiurášek, Phys. Rev. A 64, 024102 (2001); H. B. Coldenstrodt-Ronge, J. S. Lundeen, K. L. Pregnell, A. Feito, B. J. Smith, W. Mauerer, Ch. Silberhorn, J. Eisert, M. B. Plenio, and I. A. Walmsley, J. Mod. Opt. 56, 432 (2009) ; J. S. Lundeen, A. Feito, H. Coldenstrodt-Ronge, K. L. Pregnell, Ch. Silberhorn, T. C. Ralph, J. Eisert, M. B. Plenio, and I. A. Walmsley, Nat. Phys. 5, 27 (2009). [9] D. R. Cox and H. D. Miller, Theory of Stochastic Processes (Chapman & Hall/CRC, London, 1977). [10] L. Liu, J. Math. Anal. Appl. 328, 1484 (2007). [11] S. Mancini, V. I. Man’ko, and P. Tombesi, Phys. Lett. A 213, 1 (1996). [12] V. Bužek and P. L. Knight, in Progress in Optics, edited by E. Wolf (Elsevier, Amsterdam, 1995), Vol. 34, p. 1; C. C. Gerry and P. L. Knight, Am. J. Phys. 65, 964 (1997); M. Brune, S. Haroche, J. M. Raimond, L. Davidovich, and N. Zagury, Phys. Rev. A 45, 5193 (1992); L. Davidovich, A. Maali, M. Brune, J. M. Raimond, and S. Haroche, Phys. Rev. Lett. 71, 2360 (1993); M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, ibid. 77, 4887 (1996); L. Davidovich, M. Brune, J. M. Raimond, and S. Haroche, Phys. Rev. A 53, 1295 (1996); S. Haroche, Phys. Today 51 (7), 36 (1998); J. M. Raimond, M. Brune, and S. Haroche, Phys. Rev. Lett. 79, 1964 (1997); C. Monroe, D. M. Meekhof, B. E. King, and D. J. Wineland, Science 272, 1131 (1996); M. W. Noel and C. R. Stroud, Jr., Phys. Rev. Lett. 77, 1913 (1996); J. R. Friedman, V. Patel, W. Chen, S. K. Tolpygo, and J. E. Lukens, Nature (London) 406, 43 (2000). [13] V. V. Dodonov, I. A. Malkin, and V. I. Man’ko, Physica 72, 597 (1974). [14] H. P. Yuen and J. H. Shapiro, IEEE Trans. Inf. Theory IT-26, 78 (1980); B. Yurke, Phys. Rev. A 32, 311 (1985); U. Leonhardt and H. Paul, ibid. 48, 4598 (1993); T. Kim, Y. Ha, J. Shin, H. Kim, G. Park, K. Kim, T. G. Noh, and Ch. K. Hong, ibid. 60, 708 (1999). [15] A. A. Semenov, A. V. Turchin, and H. V. Gomonay, Phys. Rev. A 78, 055803 (2008). [16] For further connection between entanglement and classicality see for instance J. Sperling and W. Vogel, e-print arXiv:0811.4527. [17] F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas, Phys. Rev. A 6, 2211 (1972). [18] O. Giraud, P. Braun, and D. Braun, Phys. Rev. A 78, 042112 (2008). [19] A. Luis, Phys. Rev. A 73, 063806 (2006). [20] A. Luis, Phys. Rev. A 66, 013806 (2002). [21] A. Rivas and A. Luis, Phys. Rev. A 77, 022105 (2008).
dspace.entity.typePublication
relation.isAuthorOfPublicationb6f1fe2b-ee48-4add-bb0d-ffcbfad10da2
relation.isAuthorOfPublication.latestForDiscoveryb6f1fe2b-ee48-4add-bb0d-ffcbfad10da2

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Luis,A29libre.pdf
Size:
205.78 KB
Format:
Adobe Portable Document Format

Collections