Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Arithmetic motivic Poincaré series of Toric varieties

dc.contributor.authorGonzález Pérez, Pedro Daniel
dc.contributor.authorCobo Pablos, Maria Helena
dc.date.accessioned2023-06-19T13:21:17Z
dc.date.available2023-06-19T13:21:17Z
dc.date.issued2013
dc.description.abstractThe arithmetic motivic Poincaré series of a variety V defined over a field of characteristic zero, is an invariant of singularities which was introduced by Denef and Loeser by analogy with the Serre-Oesterlé series in arithmetic geometry. They proved that this motivic series has a rational form which specializes to the Serre-Oesterlé series when V is defined over the integers. This invariant, which is known explicitly for a few classes of singularities, remains quite mysterious. In this paper we study this motivic series when V is an affine toric variety. We obtain a formula for the rational form of this series in terms of the Newton polyhedra of the ideals of sums of combinations associated to the minimal system of generators of the semigroup of the toric variety. In particular, we deduce explicitly a finite set of candidate poles for this invariant.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipFWO-Flanders
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/12879
dc.identifier.doi10.2140/ant.2013.7.405
dc.identifier.issn1937-0652
dc.identifier.officialurlhttps://msp.org/ant/2013/7-2/p06.xhtml
dc.identifier.relatedurlhttp://msp.org/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/33249
dc.issue.number2
dc.journal.titleAlgebra & number theory
dc.language.isoeng
dc.page.final430
dc.page.initial405
dc.publisherMathematical Science Publishers
dc.relation.projectIDMTM2010-21740-C02-01
dc.relation.projectIDG031806N
dc.rights.accessRightsopen access
dc.subject.cdu512.7
dc.subject.keywordArithmetic motivic Poincaré series
dc.subject.keywordToric geometry
dc.subject.keywordSingularities
dc.subject.keywordArc spaces
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleArithmetic motivic Poincaré series of Toric varieties
dc.typejournal article
dc.volume.number7
dspace.entity.typePublication
relation.isAuthorOfPublicationb7087753-f54f-4fdc-ac95-83b1b7fae921
relation.isAuthorOfPublication.latestForDiscoveryb7087753-f54f-4fdc-ac95-83b1b7fae921

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2011arithmetic-series-toric-varieties.pdf
Size:
332.84 KB
Format:
Adobe Portable Document Format

Collections