Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Physical interpretation of the paraxial estimator

dc.contributor.authorMartínez Matos, Óscar
dc.contributor.authorVaveliuk, Pablo
dc.date.accessioned2023-06-20T03:38:54Z
dc.date.available2023-06-20T03:38:54Z
dc.date.issued2012-11-01
dc.description© 2012 Elsevier B.V. The authors thank A. Camara, T. Alieva,M.L. Calvo and J.A. Rodrigo for fruitful discussions. The authors also thank the valuable suggestions of anonymous Reviewer. Financial support from the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil, under project 477260/2010-1 and Spanish Ministry of Science and Innovation under projects TEC 2008-04105 and TEC 2011-23629 is acknowledged. P.V. acknowledges a PQ fellowship of CNPq.
dc.description.abstractThe paraxial estimator (PE) is a parameter quantifying the paraxiality of a light beam. Even if some of its features were previously tackled, key details on its behavior were not fully presented. This paper robustly presents the physical meaning of the PE in a global way, enlarging its interpretation out of the paraxial region what permits to get a first view of the beam propagation dynamics from the value of this parameter. The physical interpretation is given in the spatial domain and in the spectral domain as well. In the first one, the value of PE is related to the competition between the fast oscillations and the remaining oscillations of a propagating field. Looking at spectral domain, the PE deals with the spectral dispersion (or width) of the plane waves forming the field. In this context, a negative value of PE concerns the effective contribution of the evanescent waves what only happens in a strong nonparaxial regime. The PE also accounts the geometric and physical features on the concept of the paraxial approximation in a natural way. An analysis performed for beams propagating through a spherical thin lens reveals that the loss of paraxiality is due to the geometric effect of ray bending by the lens and by another physical effect, concerning the nonideal collimation of the beam.
dc.description.departmentDepto. de Óptica
dc.description.facultyFac. de Ciencias Físicas
dc.description.refereedTRUE
dc.description.sponsorshipConselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil
dc.description.sponsorshipMinisterio de Ciencia e Innovación, España.
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/25125
dc.identifier.doi10.1016/j.optcom.2012.07.134
dc.identifier.issn0030-4018
dc.identifier.officialurlhttp://dx.doi.org/10.1016/j.optcom.2012.07.134
dc.identifier.relatedurlhttp://www.sciencedirect.com
dc.identifier.urihttps://hdl.handle.net/20.500.14352/44151
dc.issue.number24
dc.journal.titleOptics Communications
dc.language.isoeng
dc.page.final4820
dc.page.initial4816
dc.publisherElsevier Science BV
dc.relation.projectID477260/2010-1
dc.relation.projectIDTEC2008-04105
dc.relation.projectIDTEC2011-23629
dc.relation.projectIDPQ fellowship of CNPq
dc.rights.accessRightsopen access
dc.subject.cdu535
dc.subject.keywordGaussian Beams
dc.subject.keywordLaser-Beams
dc.subject.keywordFree-Space
dc.subject.keywordApproximation
dc.subject.keywordQuality
dc.subject.ucmÓptica (Física)
dc.subject.unesco2209.19 Óptica Física
dc.titlePhysical interpretation of the paraxial estimator
dc.typejournal article
dc.volume.number285
dcterms.references[1] A.E.Siegman, Lasers, University Science Books, 1986, Chaps. 15–21. [2] B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics, JohnWiley, 1991, Chaps.1–4. [3] M. A. Porras, Optics Communications 111 (1995) 338. [4] R.Borghi, F. Gori, G. Guattari, M. Santarsiero, Optics Letters 36 (2011) 963. [5] S. R. Seshadri, Applied Optics 45 (2006) 5335. [6] P. Vaveliuk, B. Ruiz, A. Lencina, Optics Letters 32 (2007) 927. [7] C. J. R. Sheppard, S. Saghafi, Journal of the Optical Society of America A 16 (1999) 1381. [8] P. Vaveliuk, G. F. Zebende, M. A. Moret, B. Ruiz, Journal of the Optical Society of America A 24( 2007) 3297. [9] P.Hillion, Optics Communications 107 (1994) 327. [10] A.Torre, Journal of Optics A: Pure and Applied Optics 10 (2008) 055006. [11] M.A.Bandres, M.Guizar-Sicairos, Optics Letters 34 (2009) 13. [12] A.E. Siegman, G. Nemes, J. Serna, in DPSS (Diode Pumped Solid State) Lasers: Applications and Issues, OSA Trends in Optics and Photonics (Optical Society of America, 1998),vol.17, paper MQ1. [13] P.Vaveliuk, Optics Letters 34 (2009) 340. [14] P.Vaveliuk, O. Martinez-Matos, Optics Express 19 (2011) 25944. [15] R.L. Phillips, L. C. Andrews, Applied Optics 22 (1983) 643. [16] J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill Inc., NewYork, 1968, Chap.3. [17] C. J. R. Sheppard, M. A. Alonso, M. Santarsiero, R. Borghi, Optics Communications 266 (2006) 448. [18] R.Martínez-Herrero, P.M.Mejías, A. Carnicer, Optics Express 16 (2008) 2845.
dspace.entity.typePublication
relation.isAuthorOfPublicationb6643c3d-f635-48d3-a642-922a4b2e595c
relation.isAuthorOfPublication.latestForDiscoveryb6643c3d-f635-48d3-a642-922a4b2e595c

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Martinez-Matos04.pdf
Size:
303.85 KB
Format:
Adobe Portable Document Format

Collections