Visual Discrimination Increase by Yellow Filters in Retinitis Pigmentosa

Loading...
Thumbnail Image
Full text at PDC
Publication date

2016

Authors
Chamorro Gutiérrez, Eva
Aguirre Vilacoro, Victoria
Castro, José J.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Lippincott Williams & Wilkins
Citations
Google Scholar
Citation
1. Hamel C. Retinitis pigmentosa. Orphanet J Rare Dis 2006;1:40. 2. Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet 2006;368:1795Y809. 3. Bessant D. Adler’s Physiology of the Eye: Clinical Application, 10th ed. St. Louis, MO: Mosby, 2002. 4. Rundquist J. Low vision rehabilitation of retinitis pigmentosa. J Visual Impair Blind 2004;98:718Y24. 5. Alexander KR, Fishman GA, Derlacki DJ. Intraocular light scatter in patients with retinitis pigmentosa. Vision Res 1996;36:3703Y9. 6. Grover S, Alexander KR, Fishman GA, Ryan J. Comparison of intraocular light scatter in carriers of choroideremia and X-linked retinitis pigmentosa. Ophthalmology 2002;109:159Y63. 7. Franssen L, Tabernero J, Coppens JE, van den Berg TJ. Pupil size and retinal straylight in the normal eye. Invest Ophthalmol Vis Sci 2007;48:2375Y82. 8. Fan-Paul NI, Li J, Miller JS, Florakis GJ. Night vision disturbances after corneal refractive surgery. Surv Ophthalmol 2002;47:533Y46. 9. Puell Marin MC. [Night vision disturbances: should measurement methods and criteria be standardized?]. Arch Soc Esp Oftalmol 2004; 79:527Y8. 10. Yuan R, Yager D, Guethlein M, Oliver G, Kapoor N, Zhong R. Controlling unwanted sources of threshold change in disability glare studies: a prototype apparatus and procedure. Optom Vis Sci 1993; 70:976Y81. 11. de Waard PW, IJspeert JK, van den Berg TJ, de Jong PT. Intraocular light scattering in age-related cataracts. Invest Ophthalmol Vis Sci 1992;33:618Y25. 12. Cervin˜o A, Villa-Collar C, Gonza´lez-Me´ijome JM, Ferrer-Blasco T, Garcia-Lazaro S. Retinal straylight and light distortion phenomena in normal and post-LASIK eyes. Graefes Arch Clin Exp Ophthalmol 2011;249:1561Y6. 13. Elliott DB, Hurst MA. Assessing the effect of cataract: a clinical evaluation of the Opacity Lensmeter 701. Optom Vis Sci 1989;66: 257Y63. 14. Whitaker D, Steen R, Elliott DB. Light scatter in the normal young, elderly, and cataractous eye demonstrates little wavelength dependency. Optom Vis Sci 1993;70:963Y8. 15. van den Berg TJ. Analysis of intraocular straylight, especially in relation to age. Optom Vis Sci 1995;72:52Y9. 16. van den Berg TJ, IJspeert JK, de Waard PW. Dependence of intraocular straylight on pigmentation and light transmission through the ocular wall. Vision Res 1991;31:1361Y7. 17. Florakis GJ, Jewelewicz DA, Michelsen HE, Trokel SL. Evaluation of night vision disturbances. J Refract Corneal Surg 1994;10:333Y8. 18. Gutierrez R, Jimenez JR, Villa C, Valverde JA, Anera RG. Simple device for quantifying the influence of halos after lasik surgery. J Biomed Opt 2003;8:663Y7. 19. Castro JJ, Jimenez JR, Ortiz C, Alarcon A, Anera RG. New testing software for quantifying discrimination capacity in subjects with ocular pathologies. J Biomed Opt 2011;16:015001. 20. Villa C, Gutierrez R, Jimenez JR, Gonzalez-Meijome JM. Night vision disturbances after successful LASIK surgery. Br J Ophthalmol 2007;91:1031Y7. 21. Pieh S, Lackner B, Hanselmayer G, Zohrer R, Sticker M, Weghaupt H, Fercher A, Skorpik C. Halo size under distance and near conditions in refractive multifocal intraocular lenses. Br J Ophthalmol 2001;85:816Y21. 22. Castro JJ, Pozo AM, Rubino M, Anera RG, Jimenez Del Barco L. Retinal-image quality and night-vision performance after alcohol consumption. J Ophthalmol 2014;2014:704823. 23. Eperjesi F, Fowler CW, Evans BJ. Do tinted lenses or filters improve visual performance in low vision? A review of the literature. Ophthalmic Physiol Opt 2002;22:68Y77. 24. Lynch D, Brilliant R. An evaluation of the Corning CPF550 lens. Optom Monthly 1984;75:36Y42. 25. van den Berg TJ. Red glasses and visual function in retinitis pigmentosa. Doc Ophthalmol 1989;73:255Y74 26. Delori FC, Pflibsen KP. Spectral reflectance of the human ocular fundus. Appl Opt 1989;28:1061Y77. 27. Anera RG, Castro JJ, Jimenez JR, Villa C, Alarcon A. Optical quality and visual discrimination capacity after myopic LASIK with a standard and aspheric ablation profile. J Refract Surg 2011;27:597Y601. 28. Ortiz C, Castro JJ, Alarcon A, Soler M, Anera RG. Quantifying agerelated differences in visual-discrimination capacity: drivers with and without visual impairment. Appl Ergon 2013;44:523Y31. 29. Coppens JE, Franssen L, van den Berg TJ. Wavelength dependence of intraocular straylight. Exp Eye Res 2006;82:688Y92. 30. Sivak JG, Bobier WR. Effect of a yellow ocular filter on chromatic aberration: the fish eye as an example. Am J Optom Physiol Opt 1978;55:813Y7. 31. McLellan JS, Marcos S, Prieto PM, Burns SA. Imperfect optics may be the eye’s defence against chromatic blur. Nature 2002;417:174Y6. 32. Vinas M, Dorronsoro C, Cortes D, Pascual D, Marcos S. Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics. Biomed Opt Express 2015;6:948Y62. 33. Yoon GY, Williams DR. Visual performance after correcting the monochromatic and chromatic aberrations of the eye. J Opt Soc Am (A) 2002;19:266Y75. 34. Zigman S. Vision enhancement using a short wavelength lightabsorbing filter. Optom Vis Sci 1990;67:100Y4. 35. Franssen L, Coppens JE, van den Berg TJ. Grading of iris color with an extended photographic reference set. J Optom 2008;1:36Y40. 36. IJspeert JK, de Waard PW, van den Berg TJ, de Jong PT. The intraocular straylight function in 129 healthy volunteers; dependence on angle, age and pigmentation. Vision Res 1990;30:699Y707. 37. Klyce SD. Night vision after LASIK: the pupil proclaims innocence. Ophthalmology 2004;111:1Y2. 38. Wenzel A, Grimm C, Samardzija M, Reme CE. Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration. Prog Retin Eye Res 2005;24:275Y306. 39. Fishman GA, Anderson RJ, Lourenco P. Prevalence of posterior subcapsular lens opacities in patients with retinitis pigmentosa. Br J Ophthalmol 1985;69:263Y6.
Abstract
PURPOSE: The objective of this study was to evaluate, by halometry and under low illumination conditions, the effects of short-wavelength light absorbance filters on visual discrimination capacity in retinitis pigmentosa patients. METHODS: This was an observational, prospective, analytic, and transversal study on 109 eyes of 57 retinitis pigmentosa patients with visual acuity better than 1.25 logMAR. Visual disturbance index (VDI) was determined using the software Halo 1.0, with and without the interposition of filters which absorb (totally or partially) short-wavelength light between 380 and 500 nm. RESULTS: A statistically significant reduction in the VDI values determined using filters which absorb short-wavelength light was observed (p < 0.0001). The established VDIs in patients with VA logMAR <0.4 were 0.30 ± 0.05 (95% CI, 0.26–0.36) for the lens alone, 0.20 ± 0.04 (95% CI, 0.16–0.24) with the filter that completely absorbs wavelengths shorter than 450 nm, and 0.24 ± 0.04 (95% CI, 0.20–0.28) with the filter that partially absorbs wavelengths shorter than 450 nm, which implies a 20 to 33% visual discrimination capacity increase. In addition, a decrease of VDI in at least one eye was observed in more than 90% of patients when using a filter. CONCLUSIONS: Short-wavelength light absorbance filters increase visual discrimination capacity under low illumination conditions in retinitis pigmentosa patients. Use of such filters constitutes a suitable method to improve visual quality related to intraocular light visual disturbances under low illumination conditions in this group of patients. © 2016 American Academy of Optometry
Research Projects
Organizational Units
Journal Issue
Description
Received June 28, 2015; accepted April 29, 2016.
Keywords
Collections