Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Validité de la formule classique des trisécantes stationnaires

Loading...
Thumbnail Image

Full text at PDC

Publication date

1986

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Abstract

In projective 3-space over the complex numbers, a stationary trisecant of a non-singular curve C is a line meeting C in three points such that two of the tangents at these three points intersect. There are four classical formulas for space curves [see, for example {\it J. G. Semple} and {\it L. Roth}, "Introduction to algebraic geometry" (Oxford 1949); pp. 373- 377]. Classically, there was always the restriction of the generic case. {\it P. Le Barz} [C. R. Acad. Sci., Paris, Sér. A 289, 755-758 (1979; Zbl 0445.14025)] proved three of the formulas without this restriction. In this article, the fourth formula is also proved. The number of stationary tangents is $\xi =-5n\sp 3+27n\sp 2-34n+2h(n\sp 2+4n-22-2h)$ where n is the degree and h is the number of apparent double points. The complicated computation uses similar methods to those of Le Barz (loc. cit.) involving the Chow groups of Hilbert schemes.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections