Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Validité de la formule classique des trisécantes stationnaires

dc.contributor.authorMallavibarrena Martínez de Castro, Raquel
dc.date.accessioned2023-06-21T02:02:26Z
dc.date.available2023-06-21T02:02:26Z
dc.date.issued1986-11-21
dc.description.abstractIn projective 3-space over the complex numbers, a stationary trisecant of a non-singular curve C is a line meeting C in three points such that two of the tangents at these three points intersect. There are four classical formulas for space curves [see, for example {\it J. G. Semple} and {\it L. Roth}, "Introduction to algebraic geometry" (Oxford 1949); pp. 373- 377]. Classically, there was always the restriction of the generic case. {\it P. Le Barz} [C. R. Acad. Sci., Paris, Sér. A 289, 755-758 (1979; Zbl 0445.14025)] proved three of the formulas without this restriction. In this article, the fourth formula is also proved. The number of stationary tangents is $\xi =-5n\sp 3+27n\sp 2-34n+2h(n\sp 2+4n-22-2h)$ where n is the degree and h is the number of apparent double points. The complicated computation uses similar methods to those of Le Barz (loc. cit.) involving the Chow groups of Hilbert schemes.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/16642
dc.identifier.issn0764-4442
dc.identifier.officialurlhttp://gallica.bnf.fr/ark:/12148/bpt6k5496856f/f41.image.r=COMPTES%20RENDUS%20DE%20L%20ACADEMIE%20DES%20SCIENCES%20SERIE%20I-MATHEMATIQUE.langES
dc.identifier.relatedurlhttp://gallica.bnf.fr/ark:/
dc.identifier.urihttps://hdl.handle.net/20.500.14352/64678
dc.issue.number16
dc.journal.titleComptes Rendus de l'Académie des Sciences. Série I. Mathématique
dc.language.isofra
dc.page.final802
dc.page.initial799
dc.publisherElsevier
dc.rights.accessRightsrestricted access
dc.subject.cdu512.7
dc.subject.keywordstationary trisecant
dc.subject.keywordChow groups of Hilbert schemes
dc.subject.ucmGeometria algebraica
dc.subject.unesco1201.01 Geometría Algebraica
dc.titleValidité de la formule classique des trisécantes stationnaires
dc.typejournal article
dc.volume.number303
dcterms.referencesC. ELENCWAJG et P. LE BARZ, Une base de Pic (Hilb1P2), Comptes rendus, 297, série I, 1983, p. 175-178. G. ELLINSGRUD et S. A. STROMME, On the homology ofthe Hilbertscheme of points in the plane, Preprint - Séries n° 13, Universitet i Oslo, 1984. J. FOGARTY, Algebraic families on an algebraic surface, Amer. J. Math., 10, 1968, p. 511-521. D. HUSEMOLLER, Fibre bundles, G. T. M., n° 20, 1966. P. LE BARZ, Validité de certaines formules de géométrie énumérative, Comptes rendus, 289, 1979,A-755-758. R. MALLAVIBARRENA, Les groupes de Chow de Hilb4P 2 et une base pour A 2, A 3, A2<i-I, A2d- 3 de Hm/P 2 (à paraître). J. G. SEMPLE et L. Rom, Introduction to algebraic geometry, Clarendon Press, 1949, Oxford. V. VASALLO, Justification de la méthode fonctionnelle pour les courbes gauches, Comptes rendus, 303,série I, 1986, p. 299-302.
dspace.entity.typePublication

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
malla07.pdf
Size:
400.96 KB
Format:
Adobe Portable Document Format

Collections