Validité de la formule classique des trisécantes stationnaires
dc.contributor.author | Mallavibarrena Martínez de Castro, Raquel | |
dc.date.accessioned | 2023-06-21T02:02:26Z | |
dc.date.available | 2023-06-21T02:02:26Z | |
dc.date.issued | 1986-11-21 | |
dc.description.abstract | In projective 3-space over the complex numbers, a stationary trisecant of a non-singular curve C is a line meeting C in three points such that two of the tangents at these three points intersect. There are four classical formulas for space curves [see, for example {\it J. G. Semple} and {\it L. Roth}, "Introduction to algebraic geometry" (Oxford 1949); pp. 373- 377]. Classically, there was always the restriction of the generic case. {\it P. Le Barz} [C. R. Acad. Sci., Paris, Sér. A 289, 755-758 (1979; Zbl 0445.14025)] proved three of the formulas without this restriction. In this article, the fourth formula is also proved. The number of stationary tangents is $\xi =-5n\sp 3+27n\sp 2-34n+2h(n\sp 2+4n-22-2h)$ where n is the degree and h is the number of apparent double points. The complicated computation uses similar methods to those of Le Barz (loc. cit.) involving the Chow groups of Hilbert schemes. | |
dc.description.department | Depto. de Álgebra, Geometría y Topología | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/16642 | |
dc.identifier.issn | 0764-4442 | |
dc.identifier.officialurl | http://gallica.bnf.fr/ark:/12148/bpt6k5496856f/f41.image.r=COMPTES%20RENDUS%20DE%20L%20ACADEMIE%20DES%20SCIENCES%20SERIE%20I-MATHEMATIQUE.langES | |
dc.identifier.relatedurl | http://gallica.bnf.fr/ark:/ | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/64678 | |
dc.issue.number | 16 | |
dc.journal.title | Comptes Rendus de l'Académie des Sciences. Série I. Mathématique | |
dc.language.iso | fra | |
dc.page.final | 802 | |
dc.page.initial | 799 | |
dc.publisher | Elsevier | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 512.7 | |
dc.subject.keyword | stationary trisecant | |
dc.subject.keyword | Chow groups of Hilbert schemes | |
dc.subject.ucm | Geometria algebraica | |
dc.subject.unesco | 1201.01 Geometría Algebraica | |
dc.title | Validité de la formule classique des trisécantes stationnaires | |
dc.type | journal article | |
dc.volume.number | 303 | |
dcterms.references | C. ELENCWAJG et P. LE BARZ, Une base de Pic (Hilb1P2), Comptes rendus, 297, série I, 1983, p. 175-178. G. ELLINSGRUD et S. A. STROMME, On the homology ofthe Hilbertscheme of points in the plane, Preprint - Séries n° 13, Universitet i Oslo, 1984. J. FOGARTY, Algebraic families on an algebraic surface, Amer. J. Math., 10, 1968, p. 511-521. D. HUSEMOLLER, Fibre bundles, G. T. M., n° 20, 1966. P. LE BARZ, Validité de certaines formules de géométrie énumérative, Comptes rendus, 289, 1979,A-755-758. R. MALLAVIBARRENA, Les groupes de Chow de Hilb4P 2 et une base pour A 2, A 3, A2<i-I, A2d- 3 de Hm/P 2 (à paraître). J. G. SEMPLE et L. Rom, Introduction to algebraic geometry, Clarendon Press, 1949, Oxford. V. VASALLO, Justification de la méthode fonctionnelle pour les courbes gauches, Comptes rendus, 303,série I, 1986, p. 299-302. | |
dspace.entity.type | Publication |
Download
Original bundle
1 - 1 of 1