Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Additive Recursive Rules

dc.book.titlePreferences and Decisions under Incomplete Knowledge
dc.contributor.authorMontero De Juan, Francisco Javier
dc.contributor.authorDel Amo, Ana
dc.contributor.authorMolina Ferragut, Elisenda
dc.contributor.editorFodor, János
dc.contributor.editorDe Baets, Bernard
dc.contributor.editorPerny, Patrice
dc.date.accessioned2023-06-20T21:10:14Z
dc.date.available2023-06-20T21:10:14Z
dc.date.issued2000
dc.description.abstractRecursiveness is a generalization of associativity, initially introduced in order to explain what an Ordered Weighted Averaging (OWA) rule is. In this paper, additive recursive rules are presented, showing the relevance of some particular OWA recursive rules.en
dc.description.departmentDepto. de Estadística e Investigación Operativa
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/29138
dc.identifier.citationMontero, J., Del Amo, A., Molina, E.: Additive Recursive Rules. En: Fodor, J., De Baets, B., y Perny, P. (eds.) Preferences and Decisions under Incomplete Knowledge. pp. 75-88. Physica-Verlag HD, Heidelberg (2000)
dc.identifier.doi10.1007/978-3-7908-1848-2_5
dc.identifier.isbn978-3-7908-2474-2
dc.identifier.officialurlhttps//doi.org/10.1007/978-3-7908-1848-2_5
dc.identifier.relatedurlhttp://link.springer.com/chapter/10.1007/978-3-7908-1848-2_5
dc.identifier.urihttps://hdl.handle.net/20.500.14352/60877
dc.issue.number51
dc.language.isoeng
dc.page.final88
dc.page.initial75
dc.page.total208
dc.publication.placeHeidelberg
dc.publisherPhysica-Verlag
dc.relation.ispartofseriesStudies in Fuzziness and Soft Computing
dc.rights.accessRightsopen access
dc.subject.cdu519.8
dc.subject.ucmInvestigación operativa (Matemáticas)
dc.subject.unesco1207 Investigación Operativa
dc.titleAdditive Recursive Rulesen
dc.typebook part
dcterms.referencesA. del Amo, J. Montero and E. Molina: Representarion of consistent recursive rules (submitted) V. Cutello, E. Molina and J. Montero: Associativeness versus recursiveness. In: Proceedings of 26-th IEEE International Symposium on Multiple-valued Logic, Santiago de Compostela (Spain), May 29–31, 1996; pp. 154–159. V. Cutello, E. Molina and J. Montero: Binary operators and connective rules. In: M.H. Smith, M.A. Lee, J. Keller and J. Yen, Eds., Proceedings of NAFIPS’96 (North American Fuzzy Information Processing Society). IEEE Press, Piscataway, NJ (1996); pp. 46–49. V. Cutello and J. Montero: Recursive families of OWA operators. In: P.P. Bonissone, Ed., Proceedings of the Third IEEE Conference on Fuzzy Systems. IEEE Press, Piscataway, NJ (1994); pp. 1137–1141. V. Cutello and J. Montero: Recursive connective rules, Int. J. Intelligent Systems (to appear) H. Dyckoff: Basic concepts for a theory of evaluation: hierarchical aggregation via autodistributive connectives in fuzzy set theory, European Journal of Operational Research 20: 221–233 (1985) H. Dyckoff and W. Pedrycz: Generalized means as model of compensative connectives, Fuzzy sets and Systems 14: 143–154 (1984). J. Dombi: Basic concepts for a theory of evaluation: the aggregative operator, European Journal of Operational Research 10: 282–293 (1982). J. Dombi: A general class of fuzzy operators, the De Morgan class of fuzzy operators and fuzziness measures induced by fuzzy operators, Fuzzy Sets and Systems 8: 149–163 (1982). J.C. Fodor, J.L. Marichal and M. Roubens: Characterization of the ordered weighted averaging operators. Institut de Mathemdtique, Université de Liège, Prépublication 93. 011. J.C. Fodor and M. Roubens: Fuzzy Preference Modelling and Multicriteria Decision Support ( Kluwer, Dordrecht, 1994 ) J.C. Fodor, R.R. Yager and A. Rybalov: Structure of uninorms, Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems 5: 411–427 (1997) T.C. Koopmans: Representation of preference ordering with independent components of consumption. In: C.B. McGuire and R. Radner, Eds., Decision and Organization. North-Holland, Amsterdam (1972), 57–78 (2nd edition by the University of Minnesota Press, 1986 ). K.T. Mak: Coherent continuous systems and the generalized functional equation of associativity. Mathematics of Operations Research 12: 597–625 (1987). J.L. Marichal, P. Mathonet and E. Tousset: Characterization of some aggregation functions stable for positive trasnformations. Fuzzy Sets and Systems 102: 293–314 (1999). M. Mas, G. Mayor, J. Super and J. Torrens: Generation of multi-dimensional aggregation functions, Mathware and Soft Computing 5: 233–242 (1998). R.R. Yager: On ordered weighted averaging aggregation operators in multi-criteria decision making, IEEE Transactions on Systems, Man and Cybernetics 18: 183–190 (1988). R.R. Yager and A. Rybalov: Uninorm aggregation operators, Fuzzy Sets and Systems 80: 111–120 (1996)
dspace.entity.typePublication
relation.isAuthorOfPublication9e4cf7df-686c-452d-a98e-7b2602e9e0ea
relation.isAuthorOfPublication288a087a-7833-47ce-a8a6-f686293ac375
relation.isAuthorOfPublication.latestForDiscovery9e4cf7df-686c-452d-a98e-7b2602e9e0ea

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Montero133.pdf
Size:
516.29 KB
Format:
Adobe Portable Document Format