Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Averaging and orthogonal operators on variable exponent spaces L-p(.) (Omega)

Loading...
Thumbnail Image

Full text at PDC

Publication date

2014

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Hernández Rodríguez, F. L. & Ruiz Bermejo, C. «Averaging and Orthogonal Operators on Variable Exponent Spaces L p ( ⋅ ) ( Ω )». Journal of Mathematical Analysis and Applications, vol. 413, n.o 1, mayo de 2014, pp. 139-53. DOI.org (Crossref), https://doi.org/10.1016/j.jmaa.2013.11.048.

Abstract

Given a measurable space (Omega, mu) and a sequence of disjoint measurable subsets A = (A(n))(n), the associated averaging projection P-A and the orthogonal projection T-A are considered. We study the boundedness of these operators on variable exponent spaces L-P(.) (Omega). These operators are unbounded in general. Sufficient conditions on the sequence A in order to achieve that P-A or T-A be bounded are given. Conditions which provide the boundedness of P-A imply that T-A is also bounded. The converse is not true. Some applications are given. In particular, we obtain a sufficient condition for the boundedness of the Hardy-Littlewood maximal operator on spaces L-P(.) (Omega).

Research Projects

Organizational Units

Journal Issue

Description

Corrigendum to “Averaging and orthogonal operators on variable exponent spaces Lp(·) (Ω)” [J. Math. Anal. Appl. 413 (1) (2014)139–153]

Keywords

Collections