Averaging and orthogonal operators on variable exponent spaces L-p(.) (Omega)
dc.contributor.author | Hernández Rodríguez, Francisco Luis | |
dc.contributor.author | Ruiz Bermejo, César | |
dc.date.accessioned | 2023-06-19T13:23:16Z | |
dc.date.available | 2023-06-19T13:23:16Z | |
dc.date.issued | 2014-05 | |
dc.description | Corrigendum to “Averaging and orthogonal operators on variable exponent spaces Lp(·) (Ω)” [J. Math. Anal. Appl. 413 (1) (2014)139–153] | |
dc.description.abstract | Given a measurable space (Omega, mu) and a sequence of disjoint measurable subsets A = (A(n))(n), the associated averaging projection P-A and the orthogonal projection T-A are considered. We study the boundedness of these operators on variable exponent spaces L-P(.) (Omega). These operators are unbounded in general. Sufficient conditions on the sequence A in order to achieve that P-A or T-A be bounded are given. Conditions which provide the boundedness of P-A imply that T-A is also bounded. The converse is not true. Some applications are given. In particular, we obtain a sufficient condition for the boundedness of the Hardy-Littlewood maximal operator on spaces L-P(.) (Omega). | en |
dc.description.department | Depto. de Análisis Matemático y Matemática Aplicada | |
dc.description.faculty | Fac. de Ciencias Matemáticas | |
dc.description.faculty | Instituto de Matemática Interdisciplinar (IMI) | |
dc.description.refereed | TRUE | |
dc.description.status | pub | |
dc.eprint.id | https://eprints.ucm.es/id/eprint/24702 | |
dc.identifier.citation | Hernández Rodríguez, F. L. & Ruiz Bermejo, C. «Averaging and Orthogonal Operators on Variable Exponent Spaces L p ( ⋅ ) ( Ω )». Journal of Mathematical Analysis and Applications, vol. 413, n.o 1, mayo de 2014, pp. 139-53. DOI.org (Crossref), https://doi.org/10.1016/j.jmaa.2013.11.048. | |
dc.identifier.doi | 10.1016/j.jmaa.2013.11.048 | |
dc.identifier.issn | 0022-247X | |
dc.identifier.officialurl | https//doi.org/10.1016/j.jmaa.2013.11.048 | |
dc.identifier.relatedurl | http://www.sciencedirect.com/science/article/pii/S0022247X13010597 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14352/33477 | |
dc.issue.number | 1 | |
dc.journal.title | Journal of mathematical analysis and applications | |
dc.language.iso | eng | |
dc.page.final | 153 | |
dc.page.initial | 139 | |
dc.publisher | Elsevier | |
dc.relation.projectID | MTM2012-31286 | |
dc.rights.accessRights | restricted access | |
dc.subject.cdu | 517 | |
dc.subject.keyword | Variable exponent spaces | |
dc.subject.keyword | Bounded projections | |
dc.subject.keyword | Maximal operator | |
dc.subject.ucm | Análisis matemático | |
dc.subject.unesco | 1202 Análisis y Análisis Funcional | |
dc.title | Averaging and orthogonal operators on variable exponent spaces L-p(.) (Omega) | en |
dc.type | journal article | |
dc.volume.number | 413 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | cf176ab4-f289-4e3e-9659-c9b9bd629078 | |
relation.isAuthorOfPublication | 99883408-190b-4f61-be14-23d8126a2710 | |
relation.isAuthorOfPublication.latestForDiscovery | 99883408-190b-4f61-be14-23d8126a2710 |