Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA Disculpen las molestias.
 

Parabolic subgroups acting on the additional length graph

dc.contributor.authorAntolín Pichel, Yago
dc.contributor.authorCumplido, María
dc.date.accessioned2023-06-17T09:20:24Z
dc.date.available2023-06-17T09:20:24Z
dc.date.issued2021
dc.description.abstractLet A ≠ A1;A2;I2m be an irreducible Artin–Tits group of spherical type. We show that the periodic elements of A and the elements preserving some parabolic subgroup of A act elliptically on the additional length graph CAL(A), a hyperbolic, infinite diameter graph associated to A constructed by Calvez and Wiest to show that A/Z(A) is acylindrically hyperbolic. We use these results to find an element g ∈ A such that <P,g> ≅ P * <g> for every proper standard parabolic subgroup P of A. The length of g is uniformly bounded with respect to the Garside generators, independently of A. This allows us to show that, in contrast with the Artin generators case, the sequence ω(An,S)(with n ∈ N) of exponential growth rates of braid groups, with respect to the Garside generating set, goes to infinity.
dc.description.departmentDepto. de Álgebra, Geometría y Topología
dc.description.facultyFac. de Ciencias Matemáticas
dc.description.refereedTRUE
dc.description.sponsorshipMinisterio de Ciencia e Innovación (MICINN)
dc.description.sponsorshipMinisterio de Economía y Competitividad (MINECO)
dc.description.sponsorshipJunta de Andalucía
dc.description.statuspub
dc.eprint.idhttps://eprints.ucm.es/id/eprint/69511
dc.identifier.doi10.2140/agt.2021.21.1791
dc.identifier.issn1472-2747
dc.identifier.officialurlhttps://doi.org/10.2140/agt.2021.21.1791
dc.identifier.relatedurlhttps://msp.org/agt/2021/21-4/p06.xhtml
dc.identifier.urihttps://hdl.handle.net/20.500.14352/8624
dc.issue.number4
dc.journal.titleAlgebraic & Geometric Topology
dc.language.isoeng
dc.page.final1816
dc.page.initial1791
dc.publisherMathematical Sciences Publishers (MSP)
dc.relation.projectIDMTM2014-53810; SEV-2015-0554; MTM2016-76453-C2-1-P
dc.relation.projectIDMTM2017-82690-P
dc.relation.projectIDFQM-2018
dc.rights.accessRightsopen access
dc.subject.cdu512.54
dc.subject.keywordBraid groups
dc.subject.keywordArtin groups
dc.subject.keywordGeometric group theory
dc.subject.ucmÁlgebra
dc.subject.ucmGrupos (Matemáticas)
dc.subject.unesco1201 Álgebra
dc.titleParabolic subgroups acting on the additional length graph
dc.typejournal article
dc.volume.number21
dcterms.references[1] E Artin, Theory of braids, Ann. of Math. 48 (1947) 101–126 MR Zbl [2] M Bestvina, K Fujiwara, Bounded cohomology of subgroups of mapping class groups, Geom. Topol. 6 (2002) 69–89 MR Zbl [3] E Brieskorn, K Saito, Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17 (1972) 245–271 MR Zbl [4] M Calvez, B Wiest, Acylindrical hyperbolicity and Artin–Tits groups of spherical type, Geom. Dedicata 191 (2017) 199–215 MR Zbl [5] M Calvez, B Wiest, Curve graphs and Garside groups, Geom. Dedicata 188 (2017) 195–213 MR Zbl [6] M Calvez, B Wiest, Hyperbolic structures for Artin–Tits groups of spherical type, preprint (2019) arXiv To appear in Contemp. Math. [7] H S M Coxeter, The complete enumeration of finite groups of the form r2i=(ri,rj)kij=1, J. Lond. Math. Soc. 10 (1935) 21–25 Zbl [8] M Cumplido, On the minimal positive standardizer of a parabolic subgroup of an Artin–Tits group, J. Algebraic Combin. 49 (2019) 337–359 MR Zbl [9] M Cumplido, V Gebhardt, J González-Meneses, B Wiest, On parabolic subgroups of Artin–Tits groups of spherical type, Adv. Math. 352 (2019) 572–610 MR Zbl [10] F Dahmani, V Guirardel, D Osin, Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, Mem. Amer. Math. Soc. 1156, Amer. Math. Soc., Providence, RI (2017) MR Zbl [11] P Dehornoy, L Paris, Gaussian groups and Garside groups, two generalisations of Artin groups, Proc. Lond. Math. Soc. 79 (1999) 569–604 MR Zbl [12] P Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972) 273–302 MR Zbl [13] T Delzant, Sous-groupes à deux générateurs des groupes hyperboliques, from “Group theory from a geometrical viewpoint” (É Ghys, A Haefliger, A Verjovsky, editors), World Sci., River Edge, NJ (1991) 177–189 MR Zbl [14] R Flores, J González-Meneses, On the growth of Artin–Tits monoids and the partial theta function, preprint (2018) arXiv [15] E Godelle, Normalisateurs et centralisateurs des sous-groupes paraboliques dans les groupes d’Artin–Tits, PhD thesis, Université de Picardie Jules Verne (2001) [16] E Godelle, Normalisateur et groupe d’Artin de type sphérique, J. Algebra 269 (2003) 263–274 MR Zbl [17] E Godelle, Parabolic subgroups of Garside groups, J. Algebra 317 (2007) 1–16 MR Zbl [18] P de la Harpe, Topics in geometric group theory, Univ. Chicago Press (2000) MR Zbl [19] H van der Lek, The homotopy type of complex hyperplane complements, PhD thesis, Katholieke Universiteit Nijmegen (1983) [20] L Paris, Parabolic subgroups of Artin groups, J. Algebra 196 (1997) 369–399 MR Zbl [21] L Paris, Artin monoids inject in their groups, Comment. Math. Helv. 77 (2002) 609–637 MR Zbl
dspace.entity.typePublication
relation.isAuthorOfPublicationbd3bab81-47d2-4551-811a-af8ac40597c5
relation.isAuthorOfPublication.latestForDiscoverybd3bab81-47d2-4551-811a-af8ac40597c5

Download

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
antolin_parabolicsubgroups.pdf
Size:
390.45 KB
Format:
Adobe Portable Document Format

Collections