Silenciamiento presináptico por el receptor CB1 de cannabinoides
Loading...
Download
Official URL
Full text at PDC
Publication date
2017
Defense date
15/11/2016
Authors
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Complutense de Madrid
Citation
Abstract
Los receptores de cannabinoides de tipo CB1 son los receptores acoplados a proteínas G más abundantes en el cerebro. Se localizan en la presinapsis, donde inhiben la liberación de neurotransmisor en las sinapsis excitatorias del SNC tanto a corto como a largo plazo. Los efectos a corto plazo se deben a la inhibición de la entrada de calcio mediada por los canales de calcio dependientes de voltaje, así como a la apertura de canales de potasio, lo que disminuye globalmente la excitabilidad de la neurona presináptica de forma transitoria (STD, Short-Term Depression). Los cannabinoides también inhiben la transmisión sináptica a largo a plazo LTD (Long-Term Depression) debido a la inhibición de la adenilato ciclasa (AC) y la disminución de los niveles de AMP cíclico (Heifets y Castillo, 2009). Esta disminución parece afectar a la maquinaria exocitótica de forma persistente. La inducción de la LTD requiere tiempos de activación del receptor CB1 mayores que los requeridos para la inducción de los fenómenos de STD (Chevaleyre y Castillo, 2003; Ronesi et al., 2004). Una de las regiones donde más se han estudiado los cambios duraderos en la transmisión sináptica por activación de receptores CB1 es en el cerebelo. Las sinapsis que forman las fibras paralelas de la células granulares con las células de Purkinje experimentan una forma de LTD dependiente de cannabinoides. La inducción de la LTD en estas sinapsis requiere una exposición prolongada al cannabinoide concomitante con la estimulación de la fibra aferente (Safo y Regehr 2005) mientras que el mantenimiento de la LTD parece requerir óxido nítrico (NO) generado en la presinapsis que difundiría hasta la postsinapsis manteniendo la LTP (Shibuki y Okada, 1991, Aiba et al., 1994). Trabajos previos de este laboratorio han mostrado una gran heterogeneidad en la respuesta exocitótica de sinapsis individuales a los cannabinoides. Si bien muchos de los botones sinápticos muestran una exocitosis fuertemente inhibida, en otra subpoblación de botones sinápticos los cannabinoides anulan por completo la respuesta exocitótica por lo que a estos botones sinápticos se les denomina silentes. Así, botones activos en términos de función presináptica pierden su capacidad de exocitosis tras la activación prolongada con el agonista cannabinoide. Estas sinapsis silentes se caracterizan por ser incapaces de liberar neurotransmisor tras la llegada de un potencial de acción pese a experimentar una entrada de calcio normal y contar con todas las proteínas de la maquinaria exocitótica (Cousin y Evans, 2011; Crawford y Mennerick, 2012)...
Cannabinoid type 1 receptors (CB1R) are one of the most abundant G protein-coupled receptors in the brain. They mediate short-term retrograde inhibition of neurotransmitter release, as well as long-term depression of synaptic transmission at excitatory synapses. The short-term depression (STD) effects are due to the inhibition in Ca2+ influx through voltage-gated calcium channels and the opening of potassium channels, which both reduce neuronal excitability. Long-term depression (LTD) is related to adenylate cyclase (AC) inhibition and decrease in cAMP levels (Heifets and Castillo, 2009), which targets the exocytotic machinery. LTD induction requires longer CB1R activation than STD (Chevaleyre and Castillo, 2003; Ronesi et al., 2004). Long-term effects of CB1R have been extensively studied in cerebellum. Synapses established between parallel fibers of cerebelar granule cell and Purkinje cells undergo cannabioid-induced LTD. Its induction requires prolonged exposure to cannabinoids simultaneous to parallel fiber stimulation (Safo and Regehr 2005) and its maintenance seems to be dependent on nitric oxide (NO) which is generated in the presynaptic compartment and diffuses to the postsynapsis sustaining LTD (Shibuki and Okada, 1991, Aiba et al., 1994). Previous work in the laboratory has demonstrated that synaptic boutons respond in a heterogeneous way to cannabinoids. More of the boutons show inhibited exocytotic response but a subpopulation of synaptic boutons that were previously active do not respond to depolarization behaving as silent boutons. Presynaptically silent boutons are synapses containing full complement of exocytotic release proteins that fail to release neurotransmitter in response to a strong depolarization and Ca2+ influx (Cousin and Evans, 2011; Crawford and Mennerick, 2012)...
Cannabinoid type 1 receptors (CB1R) are one of the most abundant G protein-coupled receptors in the brain. They mediate short-term retrograde inhibition of neurotransmitter release, as well as long-term depression of synaptic transmission at excitatory synapses. The short-term depression (STD) effects are due to the inhibition in Ca2+ influx through voltage-gated calcium channels and the opening of potassium channels, which both reduce neuronal excitability. Long-term depression (LTD) is related to adenylate cyclase (AC) inhibition and decrease in cAMP levels (Heifets and Castillo, 2009), which targets the exocytotic machinery. LTD induction requires longer CB1R activation than STD (Chevaleyre and Castillo, 2003; Ronesi et al., 2004). Long-term effects of CB1R have been extensively studied in cerebellum. Synapses established between parallel fibers of cerebelar granule cell and Purkinje cells undergo cannabioid-induced LTD. Its induction requires prolonged exposure to cannabinoids simultaneous to parallel fiber stimulation (Safo and Regehr 2005) and its maintenance seems to be dependent on nitric oxide (NO) which is generated in the presynaptic compartment and diffuses to the postsynapsis sustaining LTD (Shibuki and Okada, 1991, Aiba et al., 1994). Previous work in the laboratory has demonstrated that synaptic boutons respond in a heterogeneous way to cannabinoids. More of the boutons show inhibited exocytotic response but a subpopulation of synaptic boutons that were previously active do not respond to depolarization behaving as silent boutons. Presynaptically silent boutons are synapses containing full complement of exocytotic release proteins that fail to release neurotransmitter in response to a strong depolarization and Ca2+ influx (Cousin and Evans, 2011; Crawford and Mennerick, 2012)...
Description
Tesis inédita de la Universidad Complutense de Madrid, Facultad de Veterinaria, Departamento de Bioquímica y Biología Molecular IV, leída el 15-11-2016